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PREFACE /_/3

Strength research is coordinated in our country by 12 divisions. One of

them is the division"Concentration of Stresses". The leadership of this divi-

sion was entrusted to the Institute of Mechanics of the Academy of Sciences of
the USSR.

Plans were made to hold yearly symposia devoted to separate branches of the

problem. The first symposium convened on May 26-29, 1964, in Kiev. The

following principalgoals were formulated: (i) determination of the principal

directions to be followed by research on the problem;(2) analysis and approval
of a "List of Problems" in research on the concentration of stresses.

The proceedings of the symposium were conducted in plenary sessions and

two sections: section of plates and shells, and section of plane problems.

The delegates listened to 46 reports devoted to an investigation of the concen-

tration of stresses near various holes, both free and reinforced. In the

reports, the following important problems of stress concentration were covered:

formulation of the basic equations of the problem of stress concentration

around holes in plates and shells under simplifying assumptions, differing from

the Kirchoff-Love hypothesis; concentrations of stresses around holes in a non-

linear arrangement for an elastic plastic problem of deformations; concentrations

of stresses around holes in glass plastics; dynamic problems of a concentration

of stresses; an investigation of the influence of cracks, macro- and micro-

impurities on the concentrati0n of stresses; experimental methods of investigating
stress concentration.

During the symposium particular emphasis was given to the following require-

ments: i) development of methods for investigating stress concentration in

structural elements and parts of machines made of new synthetic materials, which

change their physico-mechanlcal characteristics in the course of time; 2) a

considerable intensification of experimental work designed to determine the

physico-mechanical characteristics of these materials; 3) the development of

effective methods for solving the problems of stress concentration, and a more

rapid incorporation of the research results into engineering practice.
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_THE CONCENTRATION OF STRESSES AROUND CURVlLINEAR

HOLES IN PLATES AND SHELLS*

G. N. Savin/(Kiev) N 6 7 -- 24 50 2

Plates and shells are the basic elements of modern construction which, for /5

various reasons -- most often in order to decrease the weight of the construc-

tion -- are weakened by various holes. Therefore, a study of the distribution

of stresses near holes is a very important problem, both from the theoretical

and engineering point of view.

For the first time, a solution of the plane problem of the theory of elas-

ticity regarding the distribution of stresses near a circular hole was published

in 1898 by G. Kirsch (Ref. 163). The solution of this problem for a plate

weakened by an elliptic hole -- where the hole was extended along the major axis

of the ellipse -- was given for the first time in 1909 by G.V. Kolosov**

* A summary of this survey was presented by the author during the meeting of

the Elasticity Theory Subsection of the Solid State Mechanics Section at

the Second All-Union Conference on Theoretical and Applied Mechanics,

convening in Moscow from January 29 till February 5, 1964.

** It can be seen from the words of Academician S. A. Chaplygin (Ref. 135) that

the basic relations of the plane problem of the mathematical theory of

elasticity were known to S. A. Chaplygin as early as in 1900. They have not

been published, however, and therefore were not known. Consequently, they

could not possibly influence the further development of the plane problem of

the theory of elasticity.



(Refs. 61, 62). This work is remarkable in that it opened up a new era in the
development of the plane problem of the mathematical theory of elasticity. This
was due to the fact that G.V. Kolosov proposed formulating the plane problem of
the theory of elasticity by using the methods of functions of a complex variable.
He derived the basic relations for the plane problem of the theory of elasticity
in terms of complex variables, thereby predeterming the further development of
the problem for several decades in advance. In the further development of the /_66

plane problem of the mathematical theory of elasticity, a basic contribution

was made by Academician N.I. Muskhelishvili (Ref. 77) and his students [for

summaries of their works, see (Refs. 20 and 142)]. Not wishing to repeat our-

selves, we shall only point out that the work of the Soviet scientists, D. I.

Sherman, S. G. Mikhlin, S. G. Lekhnitskiy (Ref. 67), G. N. Savin (Ref. 92),

A. S. Kosmodamianskiy (Ref. 63), et al, was the most important factor in the

development of methods for solving the plane problem in both isotropic and an-

isotropic media -- namely, in the creation of both exact and approximate methods

for its solution.

Concentration of stresses around a curvilinear hole. In the investigation

of stresses around any curvilinear hole, an especially effective method is that

of N. I. Muskhelishvili (Ref. 77), based on the application of conformal map-

ping of the exterior of a given hole onto the exterior (or interior) of a unit
circle.

As is known, by this method the solution of the problem amounts to finding

two analytical functions _(_) and _(_) from the functional equations

I

! •

where _(_) is the function specifying the conformal mapplng of the exterior of

unit circle y onto the exterior of the hole under study bounded by outline r

(Figure i)
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Figure i
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After the appearance in 1933 of the first edition of N.I. Muskhelishvili's

famous monograph (Ref. 77) a vast number of problems on stress concentration --

besides different kinds of holes -- were solved by this method. In this process,

a number of fundamental data were obtained on the nature of stress distribution

around holes and, in particular, the effect on stress concentration exerted by

such factors as the rounding of hole outlines, positioning of the hole with



respect to stress field caused by an imposed load, anisotropy of the material,
plastic zones, rigidity of reinforcing rings, etc. was demonstrated.

As a result, there has in the last thirty years been an accumulation of
numerousworks on this question, which include the solution of a great number
of problems which are important from the viewpoint both of theory and, in
particular, of practice. The list of these papers at present contains more
than five hundred items. Therefore, without giving a complete list of the

works, we will restrict ourselves merely to indicating the monographs (Refs.

15, 67, 92, 141) and surveys (Ref. 20, 118, 142, 154) which examine the results

of the abovementioned papers or point out the sources where they are published.

It should be noted that similar works are also appearing at present and will

appear in the future, since a developing technology is continuously posing /7
ever new problems (Refs. _ 16).

As is easily seen from functional equations (i), the solution of the stated

problem essentially amounts to finding the function m(_). It is therefore not

surprising that this method has engendered a huge amount of literature on the

formulation of the function m(_)which conformally maps the exterior (or interior)

of the unitcircle onto the exterior of the hole under study, as well as liter-

ature on the development of methods -- at first purely analytical methods

(Ref. 24), graphical numerical methods (Ref. 9), but later experimental and

analytical methods -- using electromodeling of conformal mapping (Ref. 112).

Recently the function _(_) has been determined by means of computers (Ref. 45).
All of these matters are set forth in more detail in P. F. Fil'chakov's

monograph (Ref. 117), which gives an extensive bibliography.

Therefore we have at our disposal powerful means of formulating conformal

mapping functions for an extensive class of problems for holes whose boundaries

have no corner points. In many cases, these methods give the function m(_)

which effects an accurate (or very nearly accurate) mapping of the investigated

region onto a unit circle -- e.g., increasing the number of terms in the

mapping function successfully indicates the effect of hole outline curvature

at any of its characteristic points -- usually in a corner point with a small

radius of curvature -- on the coefficient of stress concentration. S. M.

Belonosov (Ref. 8), however, using the integral transformations of Fourier and

Mellin in conjunction with integrals of the Cauchy type, demonstrated that in

some cases for regions with corner cusp points on their boundaries an increase

in the number of terms in the polynomial mapping function may not always give

the same picture of the stress state at the corner point near the hole as

follows from a linear statement of the problem. Many plane problems in elas-

ticity theory for doubly-connected regions have been solved by A. G. Ugodchikov

(Ref. 112) and V. I. Makhovikov et al (Ref. 16) by mapping an annulus onto the

given region. /8

Effect of material anisotropy. The effect of material anisotropy on stress

concentration near an elliptical (in a particular case, a round) hole was first

studied by S. G. Lekhnitskiy (Ref. 67). Later G. N. Savin (Ref. 92) examined

this and other problems by a different method. Up till now, no accurate solu-

tion has been given for the other hole shapes. Applying the "perturbation

method' (Ref. 75) to holes nearly elliptical or round in shape, S. G.



Lekhnitskiy (Ref. 67) has given an approximate solution to this problem for
an anisotropic plate weakenedby a square, triangular with rounded corners, or
oval hole under various conditions "at infinity" (tension, pure flexure, etc.).

A. S. Kosmodamianskiy(Ref. 63) extended these solutions to encompass
holes having other shapes -- rectangular, trapezoidal, arched, and isosceles
triangular shapes. The problems which he solved made it possible for him to
discover laws reflecting the effect of plate material anisotropy on the stress
state occurring in the plate under uniaxial tension, in the case both of a
free hole and of a hole which is reinforced by a rigid ring or which is filled
with an elastic core.

Multiple-connected regions. Periodic problems. Studies of the stress

state in plates and shells, which are both isotropic and anisotropic, weakened

by several equal or unequal holes and, on the whole, are weakened by a finite

or infinite series of holes, are of great interest in engineering.

The elastic equilibrium of shells having positive Gaussian curvature which

are weakened by a series of curvilinear holes has been investigated by I. N.

Vekua (Ref. 20).

A general solution of the plane problem of elasticity theory, both for

an isotropic and for an anisotropic medium for any multiply-connected region

has been given by D. I. Sherman (Ref. 142).

G. N. Savin (Ref. 92) has provided a solution for the periodic problem

of elasticity theory in an isotropic medium for an infinite series of congruent

holes which are equally loaded. G. N. Bukharin (Ref. 92) was the first one to

inquire into the problem of stress distribution in a plate which is weakened

by a large number of round holes. The plate which is weakened by a square grid

containing round holes has been investigated by Ya. Dvorzhak (Ref. 41).

We encounter an additional development in the formulation of approximate

solutions to these problems in the studies of A. S. Kosmodemianskiy (Ref. 63).

In these studies, he investigates multiply-connected and periodic problems for

holes having congruent shape, both for isotropic and anisotropic material of

a plate which is weakened by one or more series of equal and equally-loaded

holes.

Aiming at deriving efficient approximate solutions for specific hole shapes,/9

A. S. Kosmodamianskiy (Ref. 63) introduces certain simplifications into the

general solutions of D. I. Sherman (Ref. 142). This makes it possible for him

to propose a number of efficient approximate solutions for a plate weakened by

a finite number of curvilinear holes. He has, in particular, studied problems

of stress distribution beside two square holes with rounded corners; beside

two unequal holes_ one elliptical and the other square with rounded corners;

and beside three round holes under uniaxial, as well as biaxial plate tension.

Cases are examined of tension in an anisotropic plate with two or three round

6



holes; one, two, or three infinite series of equal elliptical holes; and a
plate weakenedby two unequal holes, one of which is elliptical and the other
round.

A study of the solutions mentioned has made it possible to draw a number
of interesting conclusions of a general nature: the picture of the stress state
in a plate weakenedby two, three, or an infinite numberof round holes and
under tension in one or two directions has enabled us to ascertain the effect
exerted on stress concentration by the numberof holes, their mutual disposition,
plate material anisotropy, etc. The final formulas thus derived are suffi-
ciently simple and therefore easy to use. The accuracy of these approximate
solutions was estimated from the precision with which the boundary conditions
found fulfill the conditions of the problem under study.

Dynamic probl_ns of stress concentration and of the propagation of elastic

Waves from holes. Kromm's paper (Ref. 169) is devoted to the propagation of

elastic perturbations in an infinite plate under uniform pressure suddenly

applied to the edge of a round hole, orfor the sudden generation of radial

velocity at its boundary points. It was subsequently found that the corres-

ponding problem of tangential perturbation is quite similar to the one de-

scribed, as in the static case (Goodier and Johnsman [Ref. 158]).

These investigations indicate that the propagation of perturbations is of

a wave nature, and that the displacements on the wave front are discontinuous,

while the stresses and displacement velocity have a discontinuity acquiring

values proportional to i/ Yr. As time passes, the stress state in the plate

behind the wave front asympotically approaches the static state in which

stresses are proportional to i/r 2. Miklowitz (Ref. 174) has dealt with the

problem of a suddenly rupturing plate under tension in all directions. He

showed that the relief wave propagating in this case gives an 11.5% increase

in stress concentration on the edge of the punctured hole, in comparison to the

static case. The annular stresses which are generated may be conducive to

formation and development of radial cracks.

M. M. Sidlyar (Ref. 105, 106) examined the problem of stress concentration

near a round hole in a plate under the influence of longitudinal forces tran-

sient in time applied to its edges. The problem of stress propagation on the

edge of a hole as the result of a decreasing potential, harmonic elastic ex-

pansion wave has been examined by Pao Yi-Hsin (Ref. 82). He demonstrated that,

for certain wavelengt_ and Poisson coefficient values, a rise in stress con-

centration beside the hole is detected. This solution, however, evokes some

doubt, because the stress concentration coefficient obtained as the limiting

case in the static problem proves to be dependent on the elastic constants
of the medium.

R. D. Mindlin (Ref. 72) points out that the theory of generalized plane

stress gives a sufficiently good definition of the wave process in a plate only

for waves whose wavelength is considerably greater than the plate thickness.

Plane deformation, which is mathematically quite similar to the generalized

plane stress state, is the subject of several more studies. We may mention

/i0



papers by Baron and Mattews (Ref. 146), Baron (Ref. 6), and Baron and Parnes

(Ref. 7), in which the cavity is defined as a right circular cylinder of a

plane shock wave (wave front parallel to cavity axis). In the case of a de-

creasing expansion wave, the coefficient of stress concentration proves to be

greater than the static one, k=3.28 (instead of 3) when e = 7/2.

Durelli and Riley (Refs. 151-153) employed photoelastic methods to in-

vestigate stress distribution on the edge of round and elliptical holes when

stress waves of long and short duration pass through the plate. They reached

the conclusion that dynamic imposition of a load causes no great change in the

magnitude (only 10-11%) of the stress or its distribution from the static case.

Elastic.plastic problems. Holes with cracks. In the increased stress

region, either plastic zones may appear near the holes, which at first partially

encompass the hole edge (Figure 2a, cross-hatching) and may completely encompass

it only when the external load reaches the proper values, or cracks may appear

which arise from embrittlement of the material (Ref. 113) at points of in-

creased stress on the edge of the hole (Figure 2b), proceeding into the plate.

The corresponding stress components located at the ends of these cracks, and

found from theoretical solutions of the plane problem of elasticity theory,

become infinite. This shows that when such cracks are present the plate

weakened by a hole in which they have appeared must be destroyed under any ex-
ternal force.

b

\

a

,l I

I I

Figure 2
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Numerous experiments, however, indicate that by no means all cracks are

dangerous, i.e., they result in immediate destruction of one portion. This

is also corroborated by the theoretical studies of G. I. Barenblat and of his

numerous successors (Refs. 4, 5, 113), M. Ya. Leonov (Ref. 66), V. V. Panasyuk

(Ref. 80), and their collaborators. This particular research area of determin-

ing stress concentration Coefficients around _rcular cracks is, in the last

analysis, aimed at establishing the bearing capacity of solid bodies weakened

by cracking.

G. I. Barenblat (Refs. 4 and 5) has formulated a theory which makes it

possible to define the ultimate load in brittle fracture of a body with rather



well developed microscopic cracks. The author of the works mentioned demon-
strated that the ultimate equilibrium state of a cracked plate appears when the
coefficient of stress concentration located in proximity to the point of the
crack, and found by methods of classical elasticity theory, reaches a certain
limiting value. Therefore the determination of stress concentration coeffi-
cients near the end region (extreme end) of the crack takes on particular in-
terest.

(Ref. 66, 80) propose a newmodel of an ideally brittle body which makes
it feasible to study the stress state in brittle fracture of a body with acicu-
far stress concentrators, and to find the limiting equilibrium of this body in
the case of arbitrary initial large and small cracks. Taking advantage of this
model, M. Ya. Leonov (Ref. 66), V. V. Panasyuk (Ref. 80), and P. M. Vitvitskiy
(Ref. 23) gave a generalized solution of Griffiths' problem and Sack's problem.

O. L. Bowie (Ref. 147) and H. F. Bueckner (Ref. 149) have also studied
brittle fracture in the case where radial cracks go out from the surface of a
round hole in a plate.

(Ref. 147) deals with the problem of brittle fracture of an infinite body
in the case where n equal radial cracks go out on the free surface of a cir-
cular cavity, while constant tensile forces are applied at infinity. Stress
distribution in the examined region is found by N. I. Muskhelishvili's method.
The critical loads necessary for crack development to start are determined by
means of Griffiths' energy method. The computations are carried through to
the end only for one or two cracks. It has been shown that the local stress
field around the hole has an insignificant effect on development of sufficiently
large cracks even when _/r h > i, where _ is crack length and rh is hole radius.
For small cracks, the critical load ratio for cases of multifold and uniaxial
tension tends toward 2/3 -- i.e., toward the ratio of stress concentration
coefficients for these cases of loading. This indicates the appreciable effect
of the local stress field in development of small cracks.

(Ref. 23) handles the problem of tension exerted on an infinite plate
with a round hole and two equal cracks by constant forces "at infinity" directed
normal to the crack surface. In the solution, it was presupposed that fracture
proceeds in accord with M. Ya. Leonov's simplified model of a brittle body
(Ref. 66). The critical load was found from the conditions given in (Ref. 71).

It is theoretically demonstrated in the work by Ya. D. Fridman and Ye. M.
Morozov (Ref. 12) that a plate with a round hole under uniform pressure applied
to the edge of the hole is fractured with the formation of radial cracks.

If plastic deformations occur at several points on the hole, they will
gradually develop into the region and along the hole edge as the external load
grows larger. Boundary L (Fig. 2a) separating the plastic from the elastic
zone is not known in advance; it must be determined by solving the problem.

This class of so-called elastic-plastic problems of stress concentration
around holes is of great interest both in theory and in practice. Wewill not

/12



dwell on an analysis of the problems comprising the monograph (Ref. 92),

noting only that these problems are discussed in papers by L. A. Galin, O.S.

Parasyuk, G. N. Savin, and A. P. Sokolov. Let us also point out that the

paper by L. A. Galin is the first in this direction for the case of plane de-

formation, and that of A. P. Sokolov the first for the case of a thin plate.

Let us now pause on the basic research in this class of problem which has
been made in recent decades.

We find investigations of elastic-plastic problems for plates with a

round hole completely enveloped in a plastic zone in works by G. Yu. Dzhanelidze

(Ref. 42), K. N. Shevchenko (Ref. 140), B. V. Zaslavskiy (Ref. 44), I. Yu. Khoma

(Ref. 123), B. Budyanskiy (Ref. 148), and O. L. Mangasarian (Ref. 172).

Non-circular, for the most part elliptical, hole problems are treated in

papers by V. M. Panferov (Ref. 81), D. D. Ivlev (Refs. 46, 47), V. S. Sazhin

(Ref. 104), and P. I. Perlin (Refs. 84, 85).

Let us briefly indicate the methods employed in the above-mentioned works.

Panerov (Ref. 81) uses A. A. ll'yushin's method of plastic solutions; Ivlev

(Refs. 46-47) employs the method of the small parameter characterizing de-

viation of the shape of the hole under investigation from the round shape.

Perlin (Refs. 84-85) and Sazhin (Ref. 104) suggest an inverse formulation of

the problem. This formulation assumes that the position of any two points on

the boundary separating the elastic from the plastic zone is known and requires

that the whole boundary between these zones be defined, as well as the stress

"at infinity" causing the given elastic-plastic deformation beside the hole in

question.

In connection with these problems, we must mention the studies of G. P.

Cherepanov (Refs. 136-138), which expand upon the class of problems stipulating

that the region in which their solution is sought is not known in advance and

must be ascertained while they are being solved. Such problems include:

(i) The previously mentioned elastic-plastic problem (G. P. Cherepanov

has proposed a new approach to solving this problem for the case of a round

hole completely surrounded by a plastic zone);

(2) Local plate buckling around holes under tension because of loss of

_plate stability in these zones;

(3) The problem in elasticity theory which seeks the boundary of a body

(or a part of this boundary) from conditions imposed on the stress distribution

in this body.

A reverse problem in elasticity theory, as applied to the problem of

stress concentration around holes, leads to a pragmatically very interesting

problem involving calculation of the boundary of a hole in a plate with a

given principal stress state in which stress concentration near this hole will

be minimum or nonexistent.
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This hole, as G. P. Cherepanovhas shownin (Ref. 138), proves to be an
ellipse in a plate under tension in a single direction.

The case of partial envelopment of the hole by the plastic zone is treated
by P. I. Perlin (Refs. 84, 85) and I. I. Fayerberg (Ref. 115). Works by A. S.
Kosmodamianskiy(Ref. 64) and I. Yu. Khoma(Ref. 124) deal with elastic-plastic
problems with an infinite series of identical round holes.

Ring reinforcement of holes. Optimum rings. The first studies on re-

inforcement of holes in thin plates are those of S. P. Timoshenko (see Ref. 92),

in whose work methods of material resistance based on the curved beam theory

were used to inquire into problems of reinforcing round holes and square holes
with rounded corners.

The methods of the elasticity theory were first applied by V. L. Fedorov

[see (Ref. 92)] to the problem of subjecting an elastic plane with a circular

hole to tension when an elastic ring has been soldered to this hole.

A great deal of attention has been paid during the last fifteen years to

investigating the effect of reinforcing rings on stress distribution near

holes. This was favored at the beginning of this period by development of

powerful and efficient methods of solving the plane problem in elasticity

theory (Ref. 77) making it possible not only to formulate this contact problem

in the most general form, but also in many other cases -- i.e., for many

particular types of holes -- to obtain an effective solution to it.

Owing to the resemblance between mathematical formulations of the plane

problem in elasticity theory and the problem of thin plate bending, the

above-indicated methods were also successfully transferred by A. I. Lur'ye the

(Ref. 68) and S. G. Lekhnitskiy (Ref. 67) to bending problems for both iso-

tropic and anisotropic plates.

The basis for extensive studies of stress concentration beside holes re-

inforced with elastic rings by application of complex-variable function methods

was provided by S. G. Mikhlin's work (Ref. 73) which examines the elastic

equilibrium of an inhomogeneous ring consisting of a series of concentric rings.

Using complex-variable function methods, G. N. Savin (Ref. 92), D. V.

Vaynberg (Ref. 15), M. P. Sheremet'yev (Ref. 141), and other scientists have

investigated an extensive class of contact problems of the elastic equilibrium

of thin plates and slabs weakened by holes of circular and other shapes, with

edges reinforced by elastic rings. They have also discussed contact boundary

_problems in the plane theory of elasticity and the theory of thin-plate bending

_for regions of different rigidity consisting of concentric zones. This made

it possible to obtain solutions for a broad class of problems of importance

for engineering.

The three cited works by Savin, Vaynberg, and Sheremet'yev (Ref. 15, 92,

141) give an extensive bibliography on this problem. A rather detailed survey

of works by Soviet and foreign authors on this problem is also contained in

J. G. Goodier's article (Ref. 28). There is therefore no need to repeat these
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reviews, but it is more advisable to pause briefly on general statements of
contact problems involving reinforcement of holes in thin plates and slabs,
i.e., the possible variant schematizations of these problems in their math-
ematical formulation.

The early studies assumedthat the elastic ring was rather wide and that
its stress state was described by equations of the plane theory of elasticity,
or else by the theory of plane plate bending. As thus stated, it was quite
simple to solve problems for a simple or compoundcircular ring.

The problem of reinforcing non-circular holes is considerably more complex
and may be simplified to render a more or less acceptable, but still approxi-
mate, solution possible by substantial restrictions on the shape of the ring.
Sucha simplification [e. g., (Ref. 141)] is possible for rings whose external
and internal boundaries are represented by two coordinate lines derived from
mappings of the function depending on the shape of the hole in question.

transverse
For thin reinforced rings or rings having a shaped/cross-section, the

reinforcement ring chosen was a thin curvilinear elastic rod of constant or
varying cross-section and having an elastic behavior described by the theory of
small deformations of thin curvilinear rods. This simplification of the con-
tact problem madeit possible for N. P. Fleyshman (Ref. 92) to study the effect
of a round reinforcing ring for manyparticular cases and to find its para-
meters which are optimum (in a certain sense). This statement of the problem
for reinforcing holes in the shape of ellipses, squares with rounded corners,
etc. proved to be rather complex, and could only be solved [see (Ref. 14)] by
the method of successive approximations.

Relaxation of the boundary conditions led to further simplification of the
contact problem of reinforcing a plate or thin plate with a sufficiently thin
curvilinear rib. Thus, for the plate it is assumedthat the reinforcing rib
reacts only to tension and compression in the case of the plane problem, while
in thin plate bending it reacts to the deflection from its surface. With such
a computational system, G. N. Savin and N. P. Fleyshman (Ref. 93) obtained a
solution in quadratures to the combined contact problem for the exterior of an
elliptical hole with a reinforced rim -- a ring of constant transverse cross-
!section. This solution permits generalization to the case of any smoothhale,
i.e., holes whose outlines contain no corner points.

There are thus three alternate versions of stating contact problems in-
volving reinforcement of hole edges by elastic rings. The precise determination
of the limits of applicability of each of the three varieties of computational
systems is the object of the subsequent investigations. This determination
may obviously be realized only on the basis of adequate experimental data and
accurate solutions of a number of elasticity theory problems involving the
joint effect of either a plate or a shell with a hollow cylinder sealed into
its hole.

The ring for which there is no concentration of stresses around the hole
in the plate or shell is commonlyregarded as the optimum ring for reinforcing
such a hole. This stress concentration will obviously always be absent when
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the rigidity of the reinforcing ring exactly equals that of the flat disk cut
from the plate in question and having the shape of the hole outline. It is,
however, not always possible to select this optimum ring under other conditions
which restrict either its shape or the material from which it is made. In
these cases, we may virtually speak of an approximate solution in which further
assumptions -- for example, in regard to the stressed state in the ring -- may
be madeto simplify the problem.

optimum
In determining the/parameters of a ring reinforcing a circular hole in an

extensible plate Mansfield (Ref. 173) assumedthat the stressed state in the
ring is momentless, since the ring works only during extension and compression.

Identifying the outline of the seal with the axis of the reinforcing
ring, which he treats as an elastic thread which is only subjected to extension
and bending, M. P. Sheremet'yev (Ref. 141) examined the problem of reinforcing
a round hole in an isotropic plate under both unixial tension and under pure
flexure. V. I. Tul'chiy (Ref. iii) regarded the reinforcing ring as a curved
bar of variable rigidity, here assuming that ring thickness equals plate
thickness, and demonstrated that in this case the width of the optimum rein-
forcing ring should satisfy an ordinary Abelian differential equation of the
second kind. Hence, it follows that in this statement of the problem the
optimum ring cannot always be realized.

If, however, the stresses in the ring due to bending momentsare neg-
lected -- i.e., if it is considered as without moment-- then, as Tul'chiy
demonstrated (Ref.--lil), it is always possible to determine the rigidity of
the optimum ring both for an isotropic and an anisotropic plate. With these
simplifications we may go one step farther, i.e., wemay assumethat ring
rigidity under tension varies by the samelaw as does the stress component
having the largest absolute value around an unreinforced hole of the shape
under consideration.

If, then, we assumefor a plate with a round hole subjected to uniaxial
tension by forces o = P (Fig. 3) that the reinforcing ring rigidity EF forx
tension changes according to the law EF = (EF)I + (EF)2 cos 28, with a steel

ring having bs= _ = 1.24 cmand be=0 = 0.114 cm, the stresses in a copper plate
2

are reduced 20%over the case of a cross-section of the sameweight. It is
easy to ascertain that, with a given coefficient of stress concentration in a
plate, reinforcing rings constructed in the manner mentioned above, which we
will call quasi-optimum rings, will be lighter than rings of constant cross-
section.

/1__!

Since in practice any stresses (if the proper material is chosen) may be

assumed in the ring, the choice of quasi-optimum ring may also vary in many

ways. Of all modes, the best will be that in which the ring has the least

weight.

Further development of the theory of optimum hole reinforcement is
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advisably directed toward solution of

the following problems.

i. For a plate with a given hole

and under the effect of a given system

of external forces, let us select the

optimum or quasi-optimum reinforcing

ring which has the least weight.

Let us find the arrangement of a

given number of holes of given shape,

so that the optimum or quasi-optimum

system of reinforcing rings will have

the least weight.

Non-linear problems of stress concentration around holes in plates. In

many areas of elasticity, non-linear problems are at present becoming urgent,

both in statics and in dynamics. Among these problems are non-linear ones

dealing with stress concentration along various holes. Therefore, serious

efforts are being made to formulate and to solve problems of this sort under

various assumptions with regard to type of non-linear stress-deformation

relationship and geometric non-linearity of the problem.

No unified approach to these problems in the general case, however, has

yet been worked out. The situation is a little better, in our opinion, with

regard to the plane non-linear problem in elasticity theory. In the study of

stress concentration near holes, several directions to be taken by research in

such problems in elasticity theory have been proposed [see survey, (Ref. 96)].

i. General, geometrically plane and physically non-linear problem.

2. Physically non-linear, but geometrically linear plane problem.

3. Geometrically non-linear, but physically linear plane problem.

In each of the above directions, an approach has already been devised as

well as mathematical methods of solving the pertinent problems.

Thus, the first direction includes the joint works of A. E. Green, J. E.

Adkins, G. G. Nicholas, and R. T. Shield (Refs. 143-145, 159). Under the most

general assumptions as to physical and geometrical non-linearity, they derived,

using complex variables, a system of equations for plane non-linear theory,

both for plane deformation and for the generalized stress state as well as in-

compressible and compressible materials.

An approximate method has been proposed -- the method of the small para-

meter, which for terms of the first order leads to the basic relationships of

plane linear elasticity theory in complex form -- i.e., to the familiar Kolosov-

Muskhelishvili ratios. For the successive approximations, it leads to the

classic problems of linear elastic theory with their right sides depending on

the terms of the preceding approximations. A system has been found for
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determining terms of the second order both for plane deformation and for a

thin plate. An approximate solution is first given (accurate to terms of the

second order) of the problem of stress concentration near a round hole, either

free or with a rigid core sealed in, with the plate in the uniaxial stressed

state "at infinity."

Subsequently, the paper by Yu. I. Koyfman and the author (Ref. 94) based

on correlations of plane non-linear theory (Refs. 144, 145, 169) used the

theory of complex variable functions to study certain correlations between

terms of the second order and to formulate a statement of the different versions

of the basic boundary value problems of the plane theory when the boundary of

the region in the deformed or undeformed state is given. This paper has

shown that finding the complex second order potentials determining the second-

order stress functions in different versions of the first and second boundary

value problems may be reduced to solving boundary value problems in the theory

of complex variable functions with the boundary conditions

where f(2)(t) is the given function of external influences; F(t, t, y, 6) is

the known function of first order terms, where the type of this function and

the parameters y, 6 entering into it depend on the type of the basic boundary

problem and its version; r is the boundary of the region in the deformed or

undeformed state, depending on the type of problem; and m = i for the first

basic problem, m = K for the second basic problem. In the same article (Ref.

94) an appro_ate solution, accurate to terms of the second order, is derived

for the problem of stress concentration near a round hole in a thin plate

whose edge is reinforced by a wide ring which is sealed in.

Yu. I. Koyfman's papers (Refs. 56-60) continued the study of the second

approximation (terms of the second order) (Ref. 94) for certain problems on

stress concentration around free and reinforced circular and elliptical holes

in a sheet in a state of uniform stress at infinity. He investigated the

stressed state near a round hole reinforced with a thin, linearly elastic

ring and near round and elliptical holes into which absolutely rigid cores are
sealed.

(Ref. 56-60 and 94) have demonstrated that in the general case of the

general plane non-linear problem in elasticity theory the coefficient of stress

concentration, found with an accuracy to terms of the second order, depends on

the following factors: (a) initial and final hole shape, (b) degrees and

type of external forces (tension or compression) at infinity, (c) elastic

properties of the plate materials and (if the opening is reinforced) of the

ring material, and (d) type of elastic equilibrium (plane deformation, gener-

alized stress state).

The survey in (Ref. 96) gives a detailed analysis of the results of these

and other papers with tables of the concentration coefficient values for

round and elliptical holes. We shall therefore not pause to analyze these

works, but shall merely point out that L. A. Tolokonikov (Refs. 109, ii0) and

V. G. Gromov and L. A. Tolokonnikov (Ref. 25) also give versions of the approach
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to solving problems of stress concentration near a round hole (plane deforma-
tion) when an incompressible mediumis greatly deformed. There is also a
somewhatdifferent solution to the samedisplacement problem in the work of
I. N. Slezinger and S. D. Barskaya (Ref. 107).

The physically non-linear (but geometrically linear) plane problem (plane

deformation or generalized plane stress state) may he derived as a partial

case from the general one indicated above, but there is no known work on the

subject. This direction is at present encompassed by the papers of G. Kauderer

(Ref. 52), who has given an equation for the solution of a certain type of non-

linear elasticity ratios which are characteristic of many metals, in which the

tension-compression curve deviates from a straight line even under comparatively

small stresses (Fig. 4), and are characteristic of many materials (nonferrous

metals, certain plastics, etc.) in which this curve is already seen to deviate

perceptibly from Hooke's straight line.

solve this e(uation.

Figure 4

The small parameter method was used to

Based on this theory Yindr (Ref.

52) and I. A. Tsurpal (Refs. 127-134)

made an approximate study (accurate

to the second and third approximations)
of stress concentration near a circular

hole in a plate with several particular

types of plate loading at infinity

(tension, compression, pure shear, ex-

tension in all directions). I.A.

Tsurpal has, in his papers (Refs. 132-

134) formulated boundary conditions and

coupling conditions, and solved several

physically non-linear problems on the reinforcement of a circular hole in a

plate with concentric, linearly elastic rings of different materials for a

given force at infinity. From these studies it follows that calculation of

the physical non-linearity of the material (in the indicated approximation)

leads to a decrease -- in comparison to the classic case -- in stress con-

centration near the hole. In the case of a physically non-linear plate

material, the stresses near the opening are more smoothly distributed than in

the case of a physically linear material.

/20

The author (Ref. 95), by using conformal mapping of the region outside of

the hole in question to the exterior of a unit circle and by introducing

Kolosov-Muskhelishvili complex potentials, gave a solution for the problem of

stress concentration around curvilinear holes in a physically non-linear plate

with non-linear elasticity ratios (Ref. 47). For the desired stress function

represented as an expansion with respect to the small parameter, the differ-

ential equations and boundary conditions were obtained for each of the

successive approximations in curvilinear coordinates given by the mapping

funciton. Because of the cumbersome nature of the right sides of the differ-

ential equations obtained, however, this method results in very complex

computations for a non-circular hole. Therefore, the work of A. N. Guz',

G. N. Savin, and I. A. Tsurpal (Ref. 29) with the same non-linear law of

elasticity (Ref. 47) proposes a new approach to solving the problem stated. /.2__!1
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The theoretical basis of this approach may be found in the work of F. Stopelli
(Ref. 177), who proved the theorem that a singular solution exists to the
general equations of the three-dimensional non-linear theory of elasticity.
He substantiated the feasibility of expanding displacement components in
absolutely converging series with respect to the small parameter e with a non-
zero convergence radius, under the condition that there is a sufficiently
smooth solution of the analogous problem in linear elasticity theory. This
smoothsolution is basic in the method of solution proposed by Guz' et al.
(Ref. 29).

The _ssence of the method is that for the holes obtained from the mapping
function,

z* = RoI_ + ,! (_)l, (3)

when O -- i, where e < i is a small parameter; R0, a constant describing the

size of the hole and its position relative to the coordinate axes; and

a, o+.1(9= +_+'"+¢,,

z* .= r*#,; r* -- Ror; z = r#,; _=pe_; al----const, i

The stress function U(r, _, _, e) satisfies the non-linear fourth order

partial differential equation:

, ]-- T A (TAU) = O,

(4)

where A is the harmonic operator, while the brackets include the non-linear

portion of this equation; T is a known function U(r, +, _, e) of the stress de-

rivative functions" _s K_ iis a constant characterizing the elastic
, = G(3K+_

properties of the physically non-linear plate material; and g2 is a large

dimensionless quantity characterizing the deviation of the assumed non-linear

law of elasticity (Ref. 52) form Hooke's law.

Stress function U(r, +, _, e) and displacement components u(r, +, _, +)

and v(r, +, _, e) are represented as expansions in terms of the small parameters

e and _ = _i :

gr

V(r, _, p, Q = Ho.__ __ p_iV(h._(r, ?), (5)
R,,,,O / ,o

i
e.g., for square and triangular holes (with rounded corners), this function

had the respective form

l ( I l>ndl (_) ==_ (for. _ i).
I(9

-----_.for =_*-

/2__2
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u (r,

(5)

L where H 0 is a constant characterizing the elastic properties of the plate

material. In some non-ferrous metals and their alloys, this value is on the

order of 105-106 .

Substituting function U(r, _, _, e) from expression (5) into equation (4)

and equating the coefficients of the same powers _k_j, we will for every

function u(k,j)(k,j = i, 2, 3, ..., n) derive an equation

A_U_*./)(r, ?) = L,.i(U(O.o), U_O.l_..... U(*=_./-_)),. (6)

where L k is the non-linear operator containing functions U (0,0) , U(0,1),

U(0,2), ..., u(k-l, j-i) of the preceding approximations.

Integrating these equations with the pertinent boundary conditions also

representing the solutions as expansions in terms of the powers of the para-

meters, _k_j, we will find* functions u(k,j)(r, _). By the nth approximation,

we mean the function
k+/-n i

U_ (r, ?) = Ho ,_-o p*,lU(*, i) (r, ?). : (7)

Let us examine the simplest example taken from (Ref. 29) involving uni-

:directional, uniform extension to infinity by forces p = const of a physically

non-linear plate with the above indicated non-linearity (Ref. 52) and an

elliptical hole with semiaxes a and b (Figure 5).

The stresses o e on the edge of the hole, which are found with an accuracy

of the second approximation, are

a, = 2p[l--l,500Xpz+ 10.605k'p'+
q- 2e (cos 20 + • cos 40 -- 5,33kp z cos 20)]. (8)

o0
From expression (8) we see that coefficient K = _of stress concentration in

P

the given version of the physical non-linearity of the plate material depends

non_inearly both on the magnitude of tensile forces p (Fig. 5), on parameter
k = _B 2 characterizing the elastic properties of the plate material, and on

the ellipticity of the hole characterized by the parameter _ = a-b .
a+b

In expression (8), after setting _ equal to zero, we derive the value of

k for a round hole, and when k = 0, the value of k for an elliptical hole if

the plate material follows Hooke's law. In the latter case, however, there is

an exact solution to this problem (Ref. 77). Comparing the corresponding

values of k from the exact and approximate solution to expression (8) when

* The components of the stressed and deformed state in the curvilinear system

of coordinates (0, 0) are determined just as in (Ref. 30 and 102).
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%= 0, we obtain a clear idea of the rate of convergence of the approximate
method of solution proposed by Guz' et al. (Ref. 29).

Figure 5

steel (%2= 0.033.10-6 b-_r21 ).

The table gives such a comparison.
From the data presented in this table,
we see that the second approximation
even for a greatly elongated ellipse
a

(_ = 1.6) gives a k value which agrees
very well with the exact value (no more
than 3.0%discrepancy). The table
gives k values at two points (see Fig.
5): A (numerator) and B (denominator)

a and
for various values of p, _ ,
different materials -- aluminum bronze
(%1= 0"055"10-6--1 ) and open-hearth

bar2

It is of great theoretical and practical interest to study the stress
states near holes in plates and shells whenthey are supercritically and
plastically deformed, but there are extremely few such studies.

Ya. F. Kayuk (Refs. 53-55) examines the stress state near a circular hole
when a plate is bent with large deflections which a plate undergoes when it
loses its stability and passes into the region of post-critical elastic de-
formations. Von Karman's equations underlie the investigations, and the
axisymmetrical case of plate buckling is examined. The equations are solved by
the small parameter method with improved convergence. The results obtained
indicate that -- if the internal contour of the hole is free and the external
one is rigidly restrained -- then, as the load on the internal contour becomes
larger, the stress concentration also becomeslarger because of increased
annular force and moment.

In case the external contour is hinged to the internal one there is a rise /25

in stress concentration because of the increase in annular moments and, a
decrease in this concentration because of annular forces.

Shells weakened by holes. The first work studying the stress state

around holes in shells was A. I. Lur'ye's work published in 1946 (Ref. 69) in

which he proposed an approximate method of determining the stress state on

the boundary of a small circular hole in the lateral surface of a circular

cylindrical shell. This work served as the point of departure for Yu. A. Shev-

lyakov, I. M. Pirogov, and N. P. Fleishman, who examined a number of interest-

ing and pragmatically important problems for a cylindrical shell weakened by a

small round hole under different external loads and with different hole rein-

forcements. It should be noted that the solutions obtained by A. I. Lur'ye's

method permit the stress state to be determined only on the boundary of a

circular hole, and under the condition that this hole be of small size.
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A survey of the papers published up to November, 1961, on the use of varia-

tional methods, finite difference methods, and various experimental methods em-

ployed in studying stress concentration near holes in shells may be found in

the author's paper (Ref. 98).

Let us discuss papers which have appeared recently.

I. M. Pirogov (Refs. 86-90) has continued with Lur'ye's method to inves-

tigate the stress state in a cylindrical shell around a small circular hole.

He has studied (Refs. 86, 87) the effect of reinforcement ring rigidity and

(Ref. 89) the effect of press-fitting an elastic ring in the stressed state at

the boundary of a small circular hole. From these and preceding works by

I. M. Pirogov, certain conclusions maybe drawn as to the stress distribution

on the boundary of a small circular hole in a cylindrical shell. These con-
clusions are as follows:

i. If the basic stress state of the shell (panel) is determined by com-

ponents of the momentless group, the stress state on the boundary of the hole

at its most dangerous points is determined by the forces of this group. The

effect of flexure stresses at those boundary points may be neglected in the case

of free holes; in the case of reinforced holes, the effect of flexure stresses

must be taken into consideration.

2. If the basic stress state in the shell is determined by components of

the moment group, these components will also be fundamental in determining the

stress state on the boundary of the hole at points of maximum stress. In the

case of free holes, the stresses may be neglected which are uniformly distribu-

ted over the thickness of the shell; these stresses must be taken into account

in reinfozeed holes.

3. With increased rigidity of the reinforcing ring, the stress concentra- /26

tion diminishes, and does so to an increasing degree as the reinforcing ring
becomes wider.

We would like to note that the first and second conclusions result from

the fact that by A. I. Lur'ye's method a correction is introduced to the plane

stress state in the first case. In the second, this occurs when the plane

plate is bent. This correction is less, respectively, than the plane stress

and the stress state in plane plate bending. The third conclusion coincides

with the inference derived when studying the corresponding plane problems.

Pirogin (Ref. 88) has presented a complete solution in the polar system of

coordinates for a small round hole. In (Ref. 90) he has studied the stress

state around a hole in the case where the basic stress state in the shell is

determined by hydrostatic pressure.

The author (Ref. 97) has formulated the problem of stress concentration

near openings of arbitrary form in shells with positive end zero _I) Gaussian

(i) Further experimental research conducted in the Dynamic Strength Laboratory

of the Institute of Mechanics, Academy of Sciences, Ukrainian SSR, and in
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curvature. He presents boundary conditions and basic equations of the problem
in both differential and integral forms (Refs. 98, 176). Theseworks have pro-
posed several approaches to solving problems of stress concentration around
curvilinear holes in shells. Commonto all these approaches is the fact that
the basic equations and boundary conditions of the problems stated are written
in a curvilinear system of coordinates, in which one of the coordinate curves
on the shell surface coincides with the profile of the hole.

Hole nomenclature -- circular, square, triangular, etc. -- is determined
by the type of curve given by the mapping function _C_#when O = const for the
plane variables to which the shell is referred. The basic equation of the prob-
lem with boundary conditions and conditions at infinity may also be referred to
the sameplane. Generally speaking, whenwe follow this approach, we cometo
problems with nonseparable variables, and the variables maybe separated only
for a spherical shell weakenedby an elliptical and, in particular, a circular
hole, and for a cylindrical shell with a small round hole.

A paper by G. A. Van Fo Fy, V. N. Buyvol, and the author (Ref. i00), study-
ing the stress state in spherical shells weakenedby several circular holes
proposed a method of successive approximations. This was employed by a later
work (Ref. 99) to examine the stress state in a spherical shell weakenedby
two unequally reinforced holes. From the examples given in (Refs. 99, i00),
the conclusion was drawn that in the case of a sphe_oal shell weakenedby
circular holes, the hole effect is practically imperceptihle at the distance of

one radius (between hole profiles) of the larger hole. This conclusion was

also confirmed by Buyvol in (Refs. 10-12).
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It should be noted that because of the difficulties entailed, the authors

restricted themselves merely to,he first approximation; this afforded no oppor-

tunity to investigate reliably the reciprocal effect of holes as they came

closer together. Using the method pointed out above, V. N. Buyvol (Refs. i0,

ii) in the same (firsO approximation studied the stress state in a spherical

shell weakened by several symmetrically distributed round holes and by a single

eccentric round hole (Ref. 12). In the present author's work (Ref. 98), he

has indicated the feasibility of reducing the problem of stress concentration

around a curvilinear hole in a shell to a finite-difference problem for a rec-

tangle in a plane with variables 0, 8. I. O. Guberman (Ref. 27) has pointed

out this feasibility for a spherical shell weakened by an elliptical and square
hole with rounded corners.

A. N. Guz' proceeded from the problem of stress concentration near curvi-

linear holes expressed in differential form, which (Ref. 97) may be reduced to

finding the complex stress function

Eh' _ (p, 9) -I- 1_ (P, 0), (9)

from the differential equation

(i) Ccont.)
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the Photoelasticity Laboratory of the T. G. Shevchenko State Univer-

sity in Kiev has demonstrated that the principal system of equations estab-

lished for shells of positive and zero Gaussian curvature also remains valid
for shells of negative Gaussian curvature.



where
1 8'

• _[a{ia i a . all o I a
V, ..LaptR,_+ _) + g[_g

under corresponding boundary conditions on the profile of the hole and under

conditions at infinity p = P0" He (Refs. 30, 33, 34) successfully applied the

"perturbation theory" method which makes it possible to compute stresses not

only along the edge of the hole, but also in the region near it. This method

which is conveniently called the "method of boundary shape perturbation", was

applied by him to holes for which the mapping function has the form

z = _ (r,)= o

where N is a whole (positive) number.

He extended this approach (Ref. 32) to the case of doubly-connected regiors/28

and (Ref. 38) to the case of a cylindrical shell weakened by a small curvilinear
hole.

A. N. Guz' and the author (Ref. 102) have extended this "boundary form

perturbation" method to holes of arbitrary shape whose profiles have no corner

points and whose mapping function looks like equation (3).

The basic system of equations is integrated by the small parameter method.

Specifically, all magnitudes (stresses, displacements, given boundary conditiors)

are represented as a series with respect to the small parameter e which enters

into mapping function (3). Substituting these expansions into both the basic

differential equation and the boundary conditions, and comparing the coeffi-

cients of terms with like powers of e, we derive boundary value problems for

each of the successive approximations for a shell weakened by a round hole.

Employing this method (Refs. 30, 32-39, i01, 102), A. N. Guz', S. A.

Goloborod'ko, and the author have investigated the stress state around the

above-mentioned holes in spherical and cylindrical shells.

These papers derived solutions to the following problems with accuracy to

terms of the second order, i.e., to terms up to e2.

A 8pher_oal shell under internal pressure and weakened by elliptical

(Refs. 30, i01), square (Ref. 36), and triangular holes with rounded corners.

T e

Let us give values of the concentration coefficients k = _ for the

i 0

second approximation for a spherical shell of radius R = 200 cm, R0 = i0 cm,

h = 0.2 cm, 9 = 0.3; in the case of an elliptical hole (Ref. i01) (see Figure 5)

• -- .--_. Ro= •
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k ------5,30'-/- e19.44 cos 20 q- Es (16.93--2.49 cos 20 i l- 10,96 cos 40)].

km,x = 5,30 q- 19.44¢ -}- 25.40ss;

in the case of a square hole (Ref. 36) (see Figure 6) :[' !-_-; d=R0('_-,)]

i

k = 5.85 + 3.22cos 40 + l.O1 cos 80;

km._ = 10,08;

(12)

(13)

[ ' ]in the case of a triangular hole (Figure 7) e T' d: Ro(l+Q

k 6.50 + 6,37 cos30 + 2.48 cos60;

k=. : 15.35.

For a round hole of radius R 0 = I0 cm, the concentration coefficient of

the same forces at the hole profile will be

kffi 5.30.
(14)

From a comparison of the values of k from equations (ii) and (12) with its

value in expression (14), we see that hole shape strongly affects the value of
the coefficient of force concentration.

p

/

a //

w

_P

P

Ipl Ipl

Figure 6 Figure 7

Stress distribution in a cylindrical shell weakened by an elliptical hole

under uniform internal pressure is given in (Ref. 102), for unlaxial tension

(of a panel) in (Ref. 35), and for the same shell weakened by a square hole

under uniform internal pressure in (Ref. 39).

Let us discuss the paper by A. N. Guz' (Ref. 40) in which he examines the

stress state beside a small round hole in a shell of revolution with a very

gently sloping meridian arc.

It is assumed that this shell differs little from the circular cylindrical

one, and -- introducing the small parameter characteristic of this deviation --

the author presents the solution in the form of series with respect to this

parameter. Just as before, a sequence of boundary value problems is obtained
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for a small round hole in a circular cylindrical shell. Solution of these
problems gives the concentration coefficient at the three most charactaristic

points e = 0, 8 = _, situated respectively at the intersection of the Ox, Oy
axes (Figure 8) with the hole profile, i.e., at points A, B. Let us give these
values.

Figure 8

Coefficients of stress concentra-
tion around the circular hole in a
doubly cu_ued shell (Figure 8) are:

For the uniaxial principal
stress state (tension)

k,.0=--] _' .(3+ 5 '1

_' ,(1+ _-@');k0._= 3 + T +

. = R,. r. _/_(1--_')
R-;, = 7 -f,h• ,

(15)

(16)

where R1 is the radius of shell curvature in the cross section along axis Ox,

and R2 is the same radius in the cross section along the Oy-axis; k is the

concentration coefficient of forces T 0 in terms of stresseslTS0 inr0the non-

weakened shell at the center of the hole; and v = 0.3; e = 6' / R2h z 0.6.

Figure 9

The stress state around a circular hole in a conical shell (Figure 9)

under uniaxJal tension with e - R0 tan _ = 0.15 is characterized by con-
R I

centration coefficient values of k0= 0 = -0.85, ks= _ = -1.47.

From equations (15) and (16) it

follows that under uniaxial tension

the value of ks= 0 is 56% greater, and

the value of k0= _ is 7% greater, as

2

c_pared with a circular cylindrical

shell of radius R 2.

/30

Computations made for the conical shell (Figure 9) with tan a < 1.2, R 1 =

= 100 cm, R 0 = 10 cm, c < 0.12 e = Rq tan a demonstrate that kax for this

case differs negligibly from its value for a round hole of radius R 0 = 10 cm

T 8

in a cylindrical shell of radius RI = I00 cm. Moreover, k - (0)' where T 8
T 8
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is the force at the corresponding point of the round hole profile, and T_0)f is

the sameforce in the unweakenedconical shell with the samebasic stress state
at the point where the hole center is located.

Investigation of the stress state near a hole in a conical shell and in a
doubly curved shell leads to the following conclusions:

i. The warped state of the meridian in uniaxial tension along the meri-
dian raises k but under uniform internal pressure it lowers k .max' max

2. Shell conicity raises the concentration coefficient k for half the
hole profile in the part of the profile which is located closer to the apex of /31

the cone, and lowers the value of k for the other half of the hole profile.

Heretofore, in all problems of a cylindrical shell weakened by a curvilin-

ear hole, it was assumed that the hole was small. This resulted from the

NO
assumption that _ << i.

Recently a solution has been derived (Ref. 103) for the cylindrical shell

in the polar coordinate system as a double Fourier series for which the re-
D

striction that -_l-'- << i is eliminated. This makes it possible to obtain

a solution to the above-examined stress concentration problems for large
holes.

Papers dealing with stress concentration near curvilinear holes in i8o-

tropic shells have been considered up to this point. For _nistropic shells,

there are no such solutions. Only the single work by A. N. Guz' (Ref. 31) is

known, in which Ritz's method is used to study the problem of a stress state

around a circular hole reinforced with an absolutely rigid sleeve in an

orthotropia cylindrical shell under internal hydrostatic pressure.

All the above-considered methods and problems involve investigation of

stress concentration around holes in shells under elastic deformation. There

are scarcely any studies of similar problems under elastic-plastic deforma-

tion; there is only a restricted number of works on this subject. Thus,

(Refs. 17-19) investigate the elastic-plastic problem for a shell of revolu-

tion weakened by a round hole whose edge is reinforced by an elastic ring of

unlike rigidity. A. A. Ii'yushin's method of elastic solutions using the

method of finite differences underlies this study. A review (Ref. 98) analyzes

these papers; therefore, we will not dwell on them here, but will go on to

later works.

Thus, I. Yu. Khoma (Ref. 126), on the basis of equations which he derived

(Ref. 124) and of Mises's plasticity condition represented in forces and mo-

ments, examines the elastic-plastic problem for a flat spherical shell
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weakenedby a round hole and under internal hydrostatic pressure. The hole is
covered with a lid transmitting to its edge only a transverse force of constant
magnitude. In this work, it is presupposed that there is no elastic-plastic
zone (over the thickness of the shell), since the elastic part of the shell is
in direct contact with its plastic portion. The problem is solved by a semi-
inverse method using successive approximations'

It is of great interest to continue studies in this direction. The solu-
tion of the problem may be continued by introducing an elastic ring in the form

of a sleeve of unequal rigidity between shell and cover. The investigation

should result in obtaining rigidities of optimum or quasi-optimum reinforcement

for a circular hole in a spherical shell.

Based on the above, we may arrive at the conclusion that very little, or

almost nothing, has been done in such directions of research as:

i. Stress state in shells of zero and positive, as well as negative,

Gaussian curvature around several holes; and reciprical effect of these holes

when they are drawn closer together, i.e., in the case of multiply-connected

regions.

2. Effect of hole size on the state of shells of zero Gaussian curvature

and, in particular, shells of negative Gaussian curvature.

3. Effect of geometrical and physical non-linearity of shell material on
stress concentration near curvilinear holes.

4. Stress concentration near narrow holes and slits. Development of a

shell slit and crack theory, like the crack theory developed for the plane

problem of elasticity theory by G. I. Barenblat, M. Ya. Leonov, V. V. Panasyuk,
et al.

5. Application of modern computer technology to solving problems of
stress concentration beside holes in shells.

6. Investigation of effects on stress concentration around corner point
holes.

Very few works are devoted to experimental stress concentrations around

holes both under elastic and under elastic-plastic deformation; to the search

for optimum reinforcements for holes in plates, and particularly in shells;

as well as to the inverse problem -- _.e., the problem in which, from a given

basic stress state in the shell, the shape of the hole must be determined,

near which there would be no stress concentration or the coefficient of

stress concentration would not exceed a given value.

Temperature problems of stress coneentration around holes. At present,

greater and greater attention is being devoted to studying temperature stresses

in machine and structural elements. A systematic development of the

initial equations in the temperature problem of elasticity theory, as well

/32
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as the solution of certain other problems, may be found in manymonographson
this problem. Let us indicate one of them (Ref. 79) which is the most exten-
sive and the most recent.

It is known that a determination of the temperature field must precede a
study of the stress state in thermoelastic problems.

Most of the studies of the hole effect on distribution of temperature
stresses deal with the case of plane deformation where the temperature is
assumedto depend on two coordinates. The solution is found in the sameway as
when solving an ordinary two-dimensional boundary value problem of thermal con- /33
ductivity.

Investigations of stresses caused by holes (Refs. 2, 114) pertain to prob-
lems of this type.

(Ref. 2) thus solves the problem (stationary) for a strip with a thermally

insulated round hole under the condition that the edges of the strip have con-

stant, but different, temperatures. (Ref. 76) investigates temperature stresses

in the proximity of an infinite sequence of round holes in a plate with uniform

heat flux. It is assumed that the plate is thermally insulated on the edges of

the holes. (Ref. 122) considers the solution to the temperature problam where

the temperature distribution is given in the form of trigonometric series in an

infinite plate with an elliptical hole. (Ref. 155) examines the solution to

the temperature problem for a medium with a spherical or cylindrical cavity with

a given uniform heat flux at infinity. Distribution of temperatures and of

the stresses caused by them is computed. (Ref. 156) finds temperature distribu-

tion in a plate with a thermally insulated oval hole under the effect of a uni-

form heat flux. The exterior of the hole is mapped onto the exterior of a unit

circle by the function
b c

(_)= o_+ T + _"

(Ref. 49) is a generalization of (Ref. 156) for the case where the exterior

of the hole is mapped onto the exterior of a unit circle by the function
i

w (_)= oi_+ + 7r + + o_.• ee --_e

(Ref. 165) analyzes the effect of a plane heat source which is periodic in

time and which encounters a cylindrical or spherical cavity impenetrable to

heat and load-free in an infinite elastic body.

(Refs. 70 and 171) inquire into questions of stress around holes with

given temperature values on the edges of these holes. Thus, (Ref. 70) solves

the problem for stationary temperature distribution in the case where the heat

fields for a group of round holes are identical, and the temperature along the

edges of these holes is the same -- more exactly, constant. (Ref. 171) exam-

ines the solution to the stationary temperature problem for an infinite plane

with two round holes of the same radius whose boundaries are kept at tempera-

tures of (+T) and (-T).
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The results obtained in the abovepapers are directly transferred to the
case of a generalized plane stress state, only on condition that the surfaces
of the plates are heat insulated, since computing heat emission from the plate _34

surfaces essentially alters the problem of thermal conductivity.

There are almost no publications investigating stresses around holes for

plates and shells weakened by holes taking into account heat emission from

their surfaces either for stationary or for unstationary regimes. For the case

of bending of plates with holes (Ref. 71 and 157) have solved only a few prob-

lems under the condition that the temperature varies across the thickness of

the slab, remaining unchanged in its central plane. (Ref. 71) investigates

thermal stresses in an elastic plate with an infinite number of symmetrically

arranged round holes where temperature varies over plate thickness. (Ref. 157)

presents formulas and graphs for deflections, moments, and transverse forces in

circular plates with round holes with a linear temperature gradient over the

thickness and different boundary conditions assigned to the edges.
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"_ THEORY OF EQUILIBRIUM CRACKS IN AN ELASTIC LAYER (_

V. M. Aleksandrov_ _ _ _-,

(Rostov on Don) _ 0 f -- _450

Let us investigate the plane and three-dimensional problems of stable /39

cracks in a halfspace and in a layer having the thickness 2 h.

Stable cracks in an elastic band. Let a longitudinal stable crack having

the length 2a -- where a is the diameter halflength of the region fi occupied

by the crack in the plane --arise in an infinite, elastic band having the width

2h under the influence of the pressure q(x) which is variable over the length

and which pushes the crack apart.

We shall assume that the crack is located symmetrically with respect to

the band edges, and the relative band thickness which is determined by the

dimensionless parameter X = _ is quite large. We must determine the form of

a

the crack y(x) and its dimensions for a given pressure q(x).

The boundary conditions of the problem on the band axis of symmetry y = 0

have the following form

•x,=0; v=0 forlx1>a; %-_q(x) for Ix[<a. (I)

The boundary conditions on the band edges y = _ h may be as follows:

(i) The band is squeezed between two absolutely rigid bases; there is no
friction force between the bases and the band:

' _xw=0; V-----0;
rigid

(2) The band is squeezed between two absolutely/bases; there is complete
adhesion between the bases and band:

u=O; v=O_

(3) The band edges are free of stress:

_,u:O; %:0.

All three problems of the theory of elasticity

(3)

(4)

may be reduced by opera-

tional calculus methods determining the function y(x) characterizing the form

of the crack, from the following integral equation;1

O

"f(_) M d_ : --_ q (x) (] x l _ a), (5)

where

£

2 (I --aN '

/40

i The kernel M(t) is used in the sense of generalized functions.
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where E and o are the elastic band constants;

(6)

the functions L(u) for the problems under consideration have the following
form

I) L (u)_ sh_u + 2u.
_-_ ' (7)

2) t(u) = _ch2u+z,+! +4u, (z-- 3--4a);2_sh2u--4u
(S)sh,u -- u_

3) L(u)= 2_2u+ _.

(9)
As may be readily noted, they all have the following property:

L (u) --,-I + 0 (e-'.)for u --,oo. (i0)

It is known that one requisite condition for the existence of stable

cracks is the stipulation that the function y(x) and its first derivative

vanish at the points x = ! a (Ref. 3, 4). Thisprovides for smooth closing of

the crack edges and the finite nature of stress at its edges.

Thus, we must find the solution of equation (5) under the following
condi ti ons

7 (± a) -- "f'(+ a) -- O. (ii)

Let us find the function K(t) which satisfies the following equation:

K; - ,H(0. (12)

Within an accuracy of the linear term, we obtain

K(tl=--lnLtt+ II--L(u)! 1--cos(uO_ .
0

Let us now rewrite equation (5), employing (12), in the following form
dl

l(_)_iK at-- _q(x)_x I <a). (14)

Integrating by parts twice and taking (11) into account, we may reduce the

problem to solving the following integral differential equation:

a i

1"(DK d_ : _q(x) (Ixl _a) (15)

under the boundary conditions (ii).

of

For large values/the parameter I (which corresponds to small t) the

i1_ernel K(t) of equation (15) may be represented as follows

i. !
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where the constants a. are determined by the following relationships
i

(--l)l+*_ s_ i (17)

a, = _u - 11--L(ulldu.

It may be shown that the series in formula (16) has a convergence radius

p ffi2, from which it follows that all of the results based on formula (16) may

be reliably employed in the case of % > i.

The constants a.(i = 1,2) determined by numerical integration have the
1

following form for the problems under consideration

1). a. = --1,233; a, ffi 0,172;

2) a, = --1,738; a, = 0,312; (a ,= 0,3)i
3) al = 1.143; _=--0,429.

Let us now make a detailed investigation of the case when q(x) ffiq - Ax 2.

We find y"(x) from equation (15), with a kernel of the type (16), according

to formulas (2.9) and (2.10) given in (Ref. i). Then, integrating the expres-

sion obtained twice over x and satisfying the boundary condition (ii), we may

determine the following within an accuracy of 1
_4

(18)

under the additional condition

.,q= 1--2- _- .

Condition (19) serves to determine the halflength of the cracks a.

Let us find the expression for the total stress acting upon a crack edge:

a"

• S [( _..P= q(x) dx = 2qa I--_-,

The numerical utilization of formulas (18) - (20) in the case of _ > 2

reveals the following. With a decrease in the band thickness h and for un-

changed parameters of the pressure q and A, in the first and second problems

there is a decrease in the crack dimensions (longitudinal and transverse), the

zone of negative pressures at the ends of the crack -- which are requisite for

maintaining the crack in an equilibrium state -- decreases, and the total

stress at the crack edge increases. In the case of the third problem, the

situation is different. The crack dimensions increase, the zone of negative

pressures at the crack ends increases, and the total stress P decreases.

Stable cracks in an elastic layer. Investigating the problems given above

in the three-dimensional_version we are led to determine the function T(x, y)

characterizing the crack form from the following integral equation: 1

/42
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7(_.h) M d_d_=Tq(x, y) (x, y)_. (21)

i max_ R,where _ is the region occupied by the crack in the plane,while a = _

R = _ - x)'+ (_ - y2), q(x, y) is the pressure pushing the crack apart;

M(O [u'L(u)jo(ut)du (t= _-);, (22)

J -- Bessel function of zero order; the functions L(u) have the form (7) - (9).

In the case of stable cracks, we must find the solution of (21) which

satisfies the following condition (Ref. 3, 4):

a , (23)

on the contour L of the region

Let us find the function K(t) which satisfies the equation

h'VII (0ffiM (0. (24)

Within an accuracy of the harmonic function, we obtain

I _ (25)
K_) = 7+o[l--L(u)lll--J'(ut)ldu"

0

Let us now rewrite equation (21), employing (25), in the following form

_(_, _)_7:,_K(R)d_d_ = Vq(x, y); (x, y) E_. ! (26)

Integrating by parts and taking (23) into account, we may reduce the problem

to solving the following integral-differential equation:

_SET'_([, _'K(_)d[d_=_q(x, _; (x, y, fg. (27)

For the case X = _h = _, equation (27) assumes the following form
-- 5 ....

a

y); y) g. (28)VN (L o) W

By way of an example, let us present the solution of the problem of an

elliptic stable crack in an elastic halfspace, obtained by solving equation

:(28) under the boundary conditions (23),

Let the pressure q(x, y) have the following form

q(x,y)ffiq--Aa-r--B _.

Then the function 7(x, y) may be determined by the formula

(29)
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= _'q (i x' _)'h i-t(x, y) _,_ -_-- , : (3o)

and the following two relationships may be fulfilled:

A ----_ {e*£ (e) -F [K (e) -- £ (e)] (I -- e')}; (31)

q
B :_ {2e,E (e) --[g (e)-- £ (e)](l -- ¢,_}. (32)

which must be regarded as conditions determining the value of the semiaxes a

and b of the elliptic crack. In formulas (30) - (32), K(e) and E(e) are the

complete elliptic integrals, and e is the eccentricity.

The total stress acting upon a crack edge is given by the formula

SJ _ abq.P ,,= q(_,_)_d,;-= T (33)

Amisy_etric case. For large values of the parameter _ (which corresponds

to small p), the kernel K(t) of equation (27) may be represented in the follow-

ing form
i

£ (! ,
glt)=-[-- a,It' O_t4_ , (34)

L-- !

where the constants ai are determined by the relationships

i

(--l)i_ : (35)
a, = _j II -- L (u)] u"clu..

o

It may be shown that the series in formula (34) hawe the convergence

radius 0 = 2, from which it follows that all the results based on formula (34)

may be utilized reliably in the case of _ > i.

The constants a. (i = i) determined by numerical integration are as
l

follows for the problems under consideration:

1) at =, 0,603; 2) a; ---- 0,971; 3) at -- --!,067.
(36)

Let us now make a detailed investigation of the case of axisymmetric

stable cracks in an elastic layer, pushed apart by the pressure

q(r)--q--Ar a. i (37)

We obtain V2y(x, y) from equation (26) with a kernel of the form (34),

following the method advanced in (Ref. 2). Solving the Poisson equation

obtained under the boundary conditions (23), we may determine the following

_with an accuracy of 1
14

4qa f_(x, y) _-=_tl "
=--, _l_ _I '' (38)

/4__4
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under the additional condition
!

Condition (39) serves to determine the radius of the crack a.

(39)

The total stress acting on the crack edge has the form

16a_ (40)P =  J(l+

A numerical study of formulas (38) - (40) in the case of % > 2 shows that, /4__55

when the thickness of the layer h decreases, the qualtative picture of the

phenomenon being studied fully coincides with the numerical utilization of

formulas (18) - (20).
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LIMITING EQUILIBRIUM OF A PLATE WEAKENED BY A SYSTEM OF CRACKS
SITUATED ALONG A STRAIGHT LINE AT AN ANGLE WITH RESPECT TO THE

DIRECTION OF TENSILE FORCES

L. T. Berezhnintskiy < i_ / i) _ 6 7- 24 50 6
(_ . _

In order to derive a more comprehensive (general) picture of the influence

of defects such as cracks upon the supporting power of brittle bodies, we must

study the law governing the propagation of cracks (both rectangular and curvi-

linear cracks) in the general case of the stress state of a body with cracks --

particularly in the case of an arbitrary crack orientation in the field of
tensile stress.

/46

This report investigates one of the simplest problems of this type: the

problem of the limiting equilibrium state of an infinite elastic plate weakened

by rectilinear cracks located along the same line, which is directed at a

certain angle toward the line of tension.

We may assume that the system of rectilinear cracks (aj, bj), where j = I,

2: ..., n, in an infinite elastic plate is located along the transverse axis (see

the figure). Let us assume that the crack edges are free of external stress,and

that uniformly distributed stress (increasing monotonically) p is directed at

the angle _ to the x-axis at infinitely removed points. For this problem,

let us determine the limiting (critical) values of the stress p = p(_); when

these values are reached, at the end with the abscissa I (where I is any of the

abscissas a.,3 bj) the crack reaches a state of mobile equilibrium (it begins

to propagate).

As was shown in (Ref. i), the external stress applied to a body with a

macroscopic crack will be a limiting stress, if the stress produced by it in

the vicinity of the crack ends -- which may be calculated without allowance

for cohesion --has the singularity K/_ _ where K is the cohesion modulus,

and r is a small distance from the crack end.
14__17

In addition to this condition, we may employ the following assumption for

the effective determination of the limiting stress -- as was done in (Ref. 6).

This assumption stipulates that the initial propagation direction of an

arbitrarily oriented, rectilinear (or curvilinear) crack coincides with the

direction in which the normal tensile stress reaches a maximum intensity.

p = p(X,), we obtain the following relationships

lim [1/_ o;'x' (r, 13_.')]= _K.
r-_O X '

p

{ a°'P lim V'7 o_B j_cx_ ".•--0 " "(;) ----- O,

Thus, in order to determine the limiting values of the external stress p =

(1)

(2)

where r, 8(I ) are the polar coordinates with the origin at the apex of the
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v

=I i],Cl I I

crack with the abscissa % and the

polar axis directed along the positive

direction of the x-axis (see the fig-

ure); o(%)(r, B (%)) -- elastic tensile
B

stress perpendicular to the plane

B (_) = const; B(x) -- polar angle

characterizing the direction of the

initial crack propagation at the end

with the abscissa( _; o;(X)(r, B (_)) --

_%J(r B) in the case
stress values o B

of p = p(%).

Based on the results given in

(Ref. 3, 6, 12), the stress o(%) in the
B

polar coordinate system (r, B (%)) in

the vicinity of the crack end with

the abscissa % may be written in the

following form:

(3)
i

+ 4 A_ si_ p_ + 0 (#},

where _ is any of the abscissas a., b..
3 3

which depend on the form of the loadingThe quantities k _) and "k2 ,
(_)

and the parameters determining the crack configuration, are usually called

(Ref. i, 7) the intensity coefficients (or concentration coefficients) of the

stress at the crack apex _ in the case of symmetrical k(_) and asymmetrical
1

k(%)
2 stress distribution, respectively.

If a procedure similar to that presented in (Ref. 7) is followed when

calculating these coefficients, we obtain the following formula which relates

the intensity coefficients to the Muskhelishvili function _(z)' which describes

the problem under consideration:

I

k(_l s,x) ._a, 2 I/'2 lim (z --).)_• (z). ' (4)

The problem of the stress-deformed state of an infinite plate with

irectilinear cracks located along one line was studied in (Ref. 3, 8, 9, II).

In particular, according to (Ref. 3), for the problem under consideration the

function _ (z) by means of which the intensity coefficients are determined has

the following form

/48
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e,.(z) _ e, ao(z) = _ + (5)

clzn 1 ... e2ie)where P (z) = c0zn + - + + c while C0 = p- (1 -n n' 4

m I I

x (z) = n (z- =,0+' (z- b.F i
Rml

The term X(z) designates the branch for which z-nx(z) ÷ i in the case z ÷ _.

The coefficients CI, C2, ..., Cn may be determined from the condition of single-

valued displacements (Ref. 3) which leads to the following equation

bg

Pn(X) d.___O (g= 1, 2, n). " (6)
X (x) "" "'

=

6, (bi)

Substituting (5) in relationship (4), we find

_'. ffi k'l_ ik_J'= 2 If_! I n I I '

(bt- .#F'[] (b;-- a.) T (bI _ +.) r (7)
gul. g',_j

k('# <'i) " "k("/) --2 I/'2 +on(o/)=k --t, = z. , l" (8)

(bl--ai)2N (al--ag)_(aI--bx)i
.,_ I--I K+I

Thus, the intensity coefficients may be determined according to formulas (7)

and (8), if only we find the coefficients of the polynomial P (z)which must
n

satisfy the system of equations (6). If we now employ expression (3), we may

represent equation (i) in the following form

++o++ +++,.,:'T T = ,iF'+' (9)

o*(_) " ()()_ and " (_) if
e(1)

where the quantities k I and k_ equal the coefficients kI k 2 ,

we set p = p(l.) in the latter. The angle 8(%.) is determined by the relation-

ships (Ref. 6)

/

p_) = -i- 2 arcsin ]//6._ + l -- _r8._ + 1 rips k_x) > O;
• 2 (9._.+ i)

/ _,_+, + p,sn_-7[-$-_ (ll)
B<x)= 4" 2 are.sin V npa k_x' < O,
"" 2 (9._,+ l)

where

(lO)

nx-- h(7. I (12)

(1) < 0, and the sign "-" correspondsThe sign "+" corresponds to the value k 2

to the values k_ l) > 0. It may thus be seen that, by determining the intensity

/4__9
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(_)
coefficients, we may readily find the limiting loading p, in each

(%) and " (%)
specific case, Let us present the values of the coefficients _i k2

for certain special cases of this problem•

i. The case of an infinite plate with three cracks, when

a_ = --c, b, = --b; at = --a, b2 = a; aa = b, b, = c.

According to formulas (5) - (8), in this case we have

k(: , -- ik(_ = p (sin' u -- i sin u cos e) F (k) -- E (k) [r_ 1_
P(_) F _='_;

k_b) -- ik$b) = p (sin I a -- i sin a cos a) X

[(c, -- a') E (k) -- (b' -- aN F (k)] _f_ ;
× V (b' -- aD (c' -- _) F (k)

_, elk) ,,- "mf_----'_'_
k_' -- ik<_-' = p'(sin' a -- i sin • cos _j _-_) va V_-o,,

where F(k) and E(k) are the total elliptic integrals, respectively, of the

first and second type with the modulus k 2 cZ - b2
- c2 - a 2

(13)

• On the basis of (12),

we may conclude from the latter formulas that

ha= rib= n¢ = ¢tga.

2. The case of two equal cracks corresponds to the previous case in the

case of a ÷ O. We find

/50

Here k 2 - c2 - b2

c2

c'E (k) -- btF (k) .
•"l_{b)-- lR2"tfb} --_ p (sin 2 a -- i sin _ cos a) V b (c2 -- bD F (k)

p (k)- _ (k) c V'_.
k_° -- ik(, ° = p (sin s a -- i sin a cos a) F (k) I/_*

(14)

3. In the case b ÷ 0, we may find the following expression for the

intensity coefficients from formula (14) in the case of one crack having the
length 2c:

k, = p V'c sin' o: k, = p _'c sin u cos o.
(15)

4. In the case of two colinear cracks of unequal length with abscissas

of the ends al, bI and a2, b2, the intensity coefficients may be determined

by the formulas

_R_ _ 2 V_ c,_ + c,_ + c,.
Y (_ - a_ (_ -- a,)co,-_ ; (16)

qb_ + C,b,+q
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(b=- a=)(as-- aO (as -- bD '

Coa_+ C,al + C_
kl"_- ik_:'_ -- 21/'_ V<b,- _,__,,,- o,__, -,,,_'

(16)

where

Here we have

C, = _ (I -- e'_');

- iv,+ a,)F t_)+ 2b,_ _m,k)+ 2a,]-] _n, k_+

Ca: C, + (bl- a,) 11,(n, k) - 1, (m, k)l

-- Co

FI(.,C, == -- C, a, + (b, -- a,) _ J --

, n _",k) _ __,l,<.,_]
a, + 2 (b, -- a,) a, F(k) +(b, .. F(k) J

_ -I2

I s (r_, k) : (1 + n sin' cp) ]/1 -- k' sins ?'
0

F(E), II (n, k), 1[ (m, k) are the total elliptic integrals of the first and
second type with the modulus k and the parameters n and m, while

b2 - a2 bl - al

k2 = nm; n - a2 _ al , m --b2 _ bl . It may be readily seen that

rZa=: /tb= : /ta, --/tbm _--- ct_ (Z.

5. In the case when the plate is weakened by a periodic system of slits

having the length 2_ and the period 2L, we find the following on the basis of

results derived in (Ref. ii, I0, 2):

k,=psin=a 2Ltg__," k,=psinacosa --tg_.. (17)

/51

As may be seen from expressions (13) - (17), the intensity coefficients
may be represented as follows:

k_x,= p_x,; k_x,= p_,X,. (18)

Relationship (9), with allowance for equation (18), may be represented in the

following form

__ /( V'_
-- ' r _X_ pOOl" (19)

4:L _, .=

angle B(_), as may be readily seen on the basis of (i0), may be expressedThe

by the following formula for the examples presented above
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VB_x_ _2 arcsin Gctg2 a-_- 1 -- ]/8 ¢tgt a-F- 1
-. = 21gctg sa+l) (20)

Thus, the initial propagation direction of the cracks depends only on the

orientation of the line (the angle _), along which the cracks are located, and

does not depend on the coordinates of their ends.

We should note that the problem of the boundary conditions for a plate

with cracks located along a line perpendicular to the plate loading direction,

was investigated in (Ref. 2, 4, 5). The results presented in these articles

are obtained from formulas (13) - (20) in the case _ = _ .
2
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.... BENDING OF A THIN ISOTROPIC PLATE WITH A HOLE OF GENERAL FORM,
TAKING TEMPERATURE STRESSES INTO ACCOUNT /

N 6 7 - 24 50 5
(_armm_v>

Basic relationships. Let us investigate elastic equilibrium of an

isotropic plate having the constant thickness h. Let the plate be located in

a stationary, thermal field with a temperature which changes according to a
linear law over the thickness

T = zt_, @. (1)

We shall assume that the temperature along the upper surface is Tl(X , y),

and that it is T2(x , y) along the lower surface. Under these conditions, the

middle plane of the plate is not flat. During bending, bending moments and

torques occur, which may be determined according to the following formulas

given in (Ref. 4), with allowance for temperature

/53

Here D =

tw 0_ ]Mx=--D _+v_+_(l+v)t ,

M_ = --D [o"w_iy,+ v _i+_ tt (1 + v)t],

H.u --D (I-- ,) 0_
= _-_.

Eh 3

12(1 - v 2) is cylindrical rigidity; E, 9--Young[smodulus and

(2)

Poisson coefficient; _ -- coefficient of linear expansion; t(x, y) -- tempera-

ture; w(x, y) -- bending of the plate, which satisfies the following equation

(Ref. 4):

V'V'w=--=(I +_)V'l; V i _=_+_" (3)
J

The general solution of equation (3) may be written in the following

w = _.0+ Re _ _,(z) + x (z)l, i
(4)

form

where w0(x , y) is a particular solution of the nonhomogeneous equation (3),

which depends on temperature t(x, y); z = x - iy; #(z) and X(Z) -- analytical
functions.

/54

Thebending moments and the torques, as well as the intersection forces,

are determined from the following formulas (Ref. 5)

M r+ M_ = M e + M °-- 2D (I-- _)[?'(z)+ ?_)I,
• 0

M_, --M_ + 2ig ,y = M ° --M ° + 2iH su +
4- 2D (I-- v)iz_" (z)4-_' (z)],* ii

N. -- iN u = N o -- iN ° -- 4D_" (z). r
• U

The quantities pertaining to the particular solution and expressed by

(5)
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w0(x, y), are given by M O M 0 H 0 N O NOr ' y' Xy' X' y "

The boundary conditions for the free edge have the following form

aHnt= o: ,v,, _-N°+ +
a o

q- "_ (Hnt + Hnt) = O.

(6)

If conditions (6) are satisfied along the hole

transformed to the following form (Ref. 7)

edge, then it may be

Here we have
,p' (z) + ,_' (---_)-- e,,- i_," (z) + '1"(z)l = ic, + F (z). j

(7)

$

[ ] 3+,D(--'2T-_--,) m (s) -- i p ds , z : --1_----,
0

(8)

is the angle between the normal to the contour and the axis Ox.

Let z = m(E ) be the function which conformally maps the exterior of the

circle y having unit radius onto the exterior of an infinite plate with a hole.

In the mapping, the boundary condition (7) may then be transformed under

the circumference condtions y:

(o) + x_ (,='--'--}-- _ [to (o) _' (a) --F to' (a) _ (a)] = iC, q- F(a). (9)

Here o = ei_ is the point on the circumference y; _(_ ) = _'(_)/_'(_);

T(_) = @( _)/m'(E)-- holomorphic and single valued functions outside Y,

including an infinitely removed point. For I E I> i, in our case they have

the following form

, (:.)= _¢a,,r,-", ,r 6) = _ a;r.-". '
_., _., (I0)

If the function _( _ ) is determined, we may then find the function _( _ )

in the form given in (Ref. i), and the following dependence exists between the
coefficients

a, = a; ; a, = a;. (ll)

which follows from the conditions of single valued displacements.

The stresses (moments) on the hole contour are found according to the

following formulas

--(1 -- ,) F-- 4 (1 + _,) D Re@ (a), (12)
Hp_ : 4D Im • (:).

General solution of the problem. Let us examine a rectangular, thin,

isotropic plate with a hole whose contour is given by equations (Ref. l)

/55
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x ----R (cos 0 + _, s. cos kO), y -----R (sin 0 -- _, sk sin kO). [
k--I k-,,I

(13)

Let the plate be located in a stationary thermal field, and we shall

assume that t(x, y) - const. In this case, we have the following formulas for

the desired quantities depending on temperature
. .

W0=0, M_=M_=.D(IH-,)_; (14)

_:, = _: = _ = o.-

In the case under consideration M0 : -D(I + _) st, m = -M0 , and then
n n

the function F may be determined according to the formula

where

F= m
D(I --_) '

m=D(l+v):t, Ct=O, all0.
(15)

Integrating condition (9), as was done in the work

the function _( _ ) in the following form

n n--I m -

0(_) : :[x(l- E ksk_-'-')]-'{a., m-,E_-m a-_+(m-- l) sa_,a_,,,,_,).

The coefficients _k may be found from the following system

m--2 n

XtXm-- E (k-- 1) ",.--kSk--d = (m -- l) t E Sk=k--C,,,--,,--S,,,--,I,
k--2 k--m+i

where m takes on the values 2, 3, ..., (n + i).

(Ref. i), we obtain

(16)

(17)

Substituting (16) in formulas (12) we obtain

/_[p = t_, n+t

k--!
n-#-I

'5:H_s = --_--_ • -£. Ph sin kO,
k--I

(18)

where

m = O_t, Dt ffi D (! + ,) _;
R , R R

L = 1 _ _ _'___,,. o,+ _{cos0_k (k - l) s_s,_,- ..,ks*cos(k+ l) 0+
m #1

+ _ cos (k -- 1) 0 _, i I]-- (k -- !)1 slsi-_,-_};
k--3 i-k

(19)

(20)

/5__A6
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Here we have

The

(21a)

(21b)

(21c)

(21d)

(21e)

(22f)

(22g)

(22h)

(22i)

(23a)

(23b)

(23c)

(23d)

(23e)

(23f)

(23g)

/5__!7

Specga_ Eole8. Let us investigate a plate whose center has a:hole

cut out in the form of an ellipse I or a regular polygon, whose contours are

i The solution was obtained by another method for a plate with an elliptic hole

in (Ref. 2). However, it was erroneous, because the result of M.M. Fridman

for a circular hole (Ref. 6) does not follow from this solution.
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given by the following equations

x = R (cos 0 + sk cos k_), y = R (sin 0 -- $k sin k0). (24)

In this case, we have the following expressions for the function _(_)

and the moments on the hole contour:

m ksk
_(_)----D(3+_)" _k+l__ksk; (25)

M_ = --m {1 -- 4 (1 +_.'0 ASk==[kSk-- COS(k + 1) 0]
(3+, 0 l+ksk__2ks_cos(k_}.l) 0 ; (26)

Mp = m;

4m ksk sin (k+ I) 0 (27)
H p_ ------- 3 + _ " 1._-k=s:-- 2ksk COS(k + 1)0"

The table presents the values of the moments M O and H (in fractions ofPO

m) along the contour of an elliptic hole (k = i), a triangular hole (k = 2), a

'square hole (k = 3), and a hexagonal hole (k = 5).

We may readily obtain the value of the function _(_) and the moments

M O and HO for other holes from formulas (16) (23).
n

F=F===
] • I _._amnv,,qecKoe .t. ] Tpeyro_buoe [ KBa,apaTHoe

{} I I I

R I ^,o,mI ",_"_I "_'= I "'°'mI Mo,.,I ",o,-

_ 2o I --L2431 --0,2121 -0,7751 --o,9oo I --0,76t I --0,555
II 4o I --0,9m I -0,2461 --0,4191 --0,3311 --0,4821 --0,095
II 45 1 --0,9391 --0,233 ] -0,3951 --0,2391 --0,4751 0
II 6o I-0,8221-0,169/-0,3701 0 I-0.5501 0,3oo
II 80 [--0,7461--0,059[--0.419] 0,331[--I,4331 0,805
n 9o i-0,7341 0 i-0'515= 0,5591--2,57GI 0
[[ f|o "1--0,774] 0,,=61-,.7_1 !,395/-0,7611-0.419
II 120 I--0.8_1 0j691-4.m2! 0 /-0._0/--0.o9o
II ,40 I --0,_1 .0;z46/-0.775/--0,900/-0,482/ 0,0%
II =6o I --1,243| 0.212/ --0,419/--0,331/--0,7611 o,555
I =6o -=.3_ o I-o.37o/ o |-2'576/ o1=6o -=._ o I-O.37oI o i-='5761o

_-_ =0"--l iBi

--I,7881 o
--0,697 ]--0,242
--0,6971 0,242
--0,842 [ 0,364

--I,7881 0
--0,697 ] --0,242
-o.6o61 o
--I,I121 0'242
--1,7881 0
--0,6971--0'242
-.-0,6971 0,242
--!,788[ 0

(i) Elliptic; (2) Triangular; (3) Square; (4) Hexagonal; (5) Hole

/D_AS

If it is assumed in all the formulas that m is the moment which is

distributed uniformly along the hole edge, we then obtain the results for

a plate with a hole of general form, which is loaded by constant moments m

Which are distributed uniformly along the hole edge.

The torque H assumes maximum values for the openings indicated above
p@

in the case of O which may be determined from the equations
2ksk

cos(k + 1) 0 = l_-_k_"

The author would like to express his deep appreciation to M. K. Balashova,
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who provided numerical values.
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STRESS CONCENTRATION AROUND A_HOLE IN AN ELLIPSOIDAL SHELL

OF REVOLUTION

,.,uyvo,{/;,.,> N67-24506
(Kiev)

/59

The stress state around a hole in a shallow shell having positive Gaussian

curvature may be described by the solution of the following differential equa-
tion (Ref. 3) :

Z
XT'V_* -- ih-' I/'12(1 -- _') _* = _. (1)

here #* = w* + il_*; w* is the bending; _* -- stress function;

= E-Ih-2VI2(I - 92); D -- cylindrical rigidity; E, v and h -- elastic

constants and shell thickness. The outer loading Z acts in the direction of

the outer normal. The operators V2 and V_ may be obtained from the operator

I a 8 N .

if we set B and A (for the operator V2) or Bk 2 and Ak I (for the operator V_),

instead of M and N. Thus, A and B are the coefficients of the first quadratic

form of the shell surface, and a and B are the orthogonal coordinates coincid-

ing with the lines of principal curvatures k I and k 2.

Let usinvestigate a shallow shell, whose middle surface is

formed by the revolution of an ellipse with the semiaxes a and b (b -- axis of

revolution). We shall assume that Z = const., and that the shell is weakened

at the apex by a circular hole having the radius r = r 0.

The hole is closed by a cover which transmits only the action of the

intersection force to the shell. In addition, we shall only investigate

shells which do not differ greatly from spherical shells -- i.e., shells with

small eccentricity e = i - a2b -2.

In view of the shallowness of the shell, it _ advantageous _ sdect the polar /60

coordinates _ and e related to the shell apex as e and B. Then A = i, B = r,

and we may take the functions (Ref. i) as the main radii of curvature

From this point on, we shall discard terms containing powers of e which are

higher than the first power.

If we set _* ffi_ + _, where _ is the solution of equation (i) in the

case of a shell with no hole, we then have (Ref. 2)

T,=-f l--t 1 _ . _, Zb _, (3)-- , =_ 1--, 1--_ ,

The following equation is obtained from (i) for the function _ expressing the

55



stress state which is perturbed by a h6_le"

= = (bh)-* V 12 (1 -- ,_).

(4)

Since only the first powers of _ remain in the expressions for the main

radii of curvature, and then in (3), the solution of equation (4) may be

naturally sought in the following form

In order to find _(0), we then have the equation

_,_o)--ix'V'_¢ o)= 0
I

and the boundary conditions (in stresses and moments)

(5)

--T; ----0;0---- for r=re.

For _(i), the nonhomogeneous equation is obtained

V,_7_(,) _ ix,_4_<t) = ix, l. _ (r d. `°) r"

and the boundary conditions

.....................

(6)

(7)

(8)

As may be seen, the problem of the stress state in an ellipsoidal shell

of revolution may be reduced to the successive solution of problems regarding

the stress state of a spherical shell having the radius b.

The solution of equation (5) is:

_(o, = (A + iB) H_ ') (ui l/'_ + iX In u (u = xr). (9)

H_I)- (uiV_ = her (u) + i hei (u) are the Hankel functions of zerowhere

order of the first type. The constants A, B, C for the given boundary condi-

tions (6) have the following form (Ref. 4)

A = Zuo p (uo) .
• 2_.'----D" a (Uo)her' (u. -- [_(uo) hei' (%) '

B = __ Zu, • (uo)
2x4D " a (uo) her' (u0 -- _ (uo) hei' (u_ ' C = 0.

(io)

/61

The functions _ and 8 may be determined by the formulas

(u) = hei (u) + 1 --u * her' (u); _ (u) = her (u) ----g-ne,l--..., (u). _

The stresses and moments determined according to the fun_ion (9) are:
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T_°) x_C ----_( hei' -_)=-_-+ A .--T + B ;

T_o, _---- Z'Cu-'i"+._ [A (her hei'$----_-]-B (hei _)I-_- [ ; ,

G,_°' = --Dx' IA, (u) + Bp (u)]; i
I

G_O' ---- --Dx' [A (v hei -1-''--_ her ]-- _'_ " (v her -I- _-_ hei')] :'

OJm = Dx s (A hei' + B her'). "

(lla)

(llb)

(llc)

(lid)

(lie)

The argument u is omitted here, as well as in the following, in the functions

her (u) and hei (u) for the sake of simplicity.

Let us turn to the solution of the problem (7), (8). Equation (7) may

be integrated twice, and if we discard the components which we do not need,
we obtain

which yields -- after

:,..[o,0,-  .drj,'
substitution of _(0) from (9) --

rl {D .2 --"" +'°' :7,
•, ¢7 Hm ",r' lrT)].-- _-_- ,_ t

(12)

The following function is the general solution of the nonhomogeneous equation
(12)

• ¢'>= i),Ct In u + (A, + iBO H(o'_ (ui 1/7) --

A + iB 2 {') •_ i2 (a + _B)u_FTH;" (u_I/7) + _ [4__o (ut F_ +

-F u V7(8 -J- iu I) H_ ', (ui V'i)] (xr -- u).

(13)

Since it is of particular interest to formulate the particular solution,

we may write it separately. If

_-'d'Y--_'7 " dyd_+ y = H_"(x);.x'H_" (x)', xH_"(x),

then the following functions will be the particular solutions corresponding to

these three right hand parts

• ,,,, ...,,, _;(y= _ (x), T"o (x)-- I-- H_'(x);

xs l.ffl) ._,x M(I)
--T"o (x)+ 2"" (x).

Dividing the real and imaginary parts in (13), we obtain

I_."_ = A, her -- B, hei -6 12_ 14u[ (u) -I- P (u) (u)--8q/!u)]; (14)

_,T{') = A, hei -}- Bt her -}- _ [4u_? (u) -t- _ (u) _' (u) +8/' (u)l+k in u.
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Here the following notation is introduced:

# _) = A her -:- B hei; _ (u) = A hei + B her;

The stress and moments corresponding to the stress

(14) will be:

(u) = 6,'b'-- u'.

and bending functions

T_ I) _. _lCl ]h,i' ._l" -V + o_ 7 + t (u) ;

Zl

= --_. -- B_ T (u);

• G_'i= "Dxs[AI= (U) "}"BI_ (u) -]- g (u)l;

_l_'= --D,'[A, (v hei- '----_ her:)- B, (, her + _.2 hei')-l-G.(u)];

Qji} = Dz' lAl hei' + Bl her' + q (u)].

(15a)

(15b)

(1Do)

(15d)

(15e)

the
The functions thus included t(u); T(u); g(u); G(u); q(u)

following formulas :

i 2x=b't (u) = lL (u) [ (u) + 2u_" (U);

.. 12_'b'T (u) = ul_ (u) [' (u) + I_(u) f (u) + 2u_' (u);

12x'b'g (u) = ul_ (u) _' (u) + (1 + ,) 11_(u) q, (u) -- 2u[' (u)l;

12x'b_ (u) = _ul_ (u) _' (u) + (1 + v) IV (u) _ (u) -- 2uf' (u)l;

12x'b'q (u) = ul_ (u) I (u) + 21_ (u) _' (u) -- 2u'_,' (u).

are given by

The arbitrary constants AI; BI; CI, contained in (14) and (15a) - (15e) may be

determined from the boundary conditions (8):

AI g (Uo)her' -- q (Uo)fl (Uo).
= a (u0) her' -- _ (uo) hei' '

g (uo) hei' -- q (u0)= (uo) .
B1 = _ (-_l.)_)h_ ' cl = 0.

By way of an example, two shells were investigated: (1) a = 245 cm, 2)

a = 165 cm The remaining data are identical: b = 200 cm, h = 0.2 cm,

r 0 = 20 cm_ E = 7.2.106 h/cm 2, _ = 0.3. The calculations show that in the

first case the stresses on the hole decrease as compared with a spherical

shell having the radius b = 200 cm by approximately 12%. In the second case,

the stresses T* increase. The moments change to a somewhat greater extent.
0

It may thus be seen that even for small eccentricity its influence may be

significant upon the bending stresses.
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2CONCENTRATION OF STRESSES IN GLASS-FIBER REINFORCED PLASTICS

Synthetic construction materials such as oriented glass-fiber reinforced

;plastics represent a heterogeneous medium whose main components are elementary

iglass filaments and a viscous-elastic polymer which connects the filaments

to each other. Oriented glass-fiber reinforced plastics which are not made of

itissue are of particular practical interest; they make it possible to produce

:a durable material with sharply expressed anisotropic properties. Due to the

:nonuniformity of th e macrostructure, the stress state of such a material will

always be complex due to perturbations produced by rigid inclusions -- glass

filaments. Therefore, in glass-fiber reinforced plastics, the stress con-

'centration, arising from openings, grooves, and hollows, applies to perturba-

tion in the stress state in the material itself. All of the polymers presently

employed for preparing glass-fiber reinforced plastics are viscous, elastic

substances which lead to the redistribution of stresses with time.

A layer of material equipped with a bundle of straightened filaments

provides the basis of glass-fiber reinforced plastics which are not made of

tissues. The transverse cross section (x i000) is shown in Figure i.

In the model which we have assumed, the filaments are placed in an ideal

order (FigqK_J_forming a regular doubly periodic structure.

At moderate temperatures, the glass filaments represent an elastic

material whose mechanical properties may be described by Hooke's law:

a,k= o,,+ =. + au = 3Koe,,,
1

= --_ ,kkS#)
(1)

We shall study the thermoreactive polymers used in glass-fiber reinforced

plastics on the basis of the theory of elastic hereditary media (Ref. 4).

Experiments have shown that the linear theory leads to satisfactory

results for a strew6 up to 0.8o B. It was found in experiments that permanent

deformations of the polymers examined I are quite small. Figure 3 presents the

the results derived from an experiment with simple stretching for 98.1"5 bar.

The relationship between the stresses and deformations for a homogeneous poly-

mer may be expressed as follows

( ,,,)

/64
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i
The experiments were performed on epoxy resins strengthened by maleic anhyd-

ride.
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In formulas (2) the quantities K*, G* must be regarded as operators in-

fluencing the time function -- for example,
l

ev(,) = eolt(o-.. 9 (,') ,-,,)dr,}. (3)
o

where )I_X(-<, t-t') is the function of Yu. N. Rabotnov (Ref. 4)

3,-x (--z, t-- t') (t-- t')x-' _" ._ (t-- t')kx i= _--xl rlx(_+i)) "
........ iZ.-O " '

Similar formulas exist for other operators.

(4)

402

Q_

f

0 _OO I000

Figure 3

If the stress gradients are such

that we may introduce the mean stress

on surfaces containing a rather large

number of filaments, then the mean

stresses and deformations will be re-

lated to each other by means of certain

relationships. We shall present these

relationships here for the case when

the resin completely adheres to the
filaments and for the case of ideal

technology in manufacturing the glass-

fiber reinforced plastics.

We shall first establish the

relationship between the mean shearing stresses <_12 > and <Y13 > and correspond-

ing mean displacement angles.

It may be shown that the solution of the problem regarding the stress

state of the reinforced substance shown in Figure 2 may be reduced to deter-

mining the two functions (_a and _s ) of the complex variable z = x 2 + ix 3.

The sign < > designates the mean stress over the averaging area. The

/66
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functions fulfilling all the requisite conditions of periodicity maybe found
in the form of the series

Z2k.FI_a (z, t) = a2_ (t) 2k + 1' a2k = a_. + ia_,;
k..O

_, X_k+ r_-')(z). (5)
_, (z, t) = Co (t) z-- C, (t) _,_:.(:) + m C=_+2(t) (2k+ i)l. '

k--I

C2_= C_ = iC;,,
where _n)

z) is the tn_h derivative of the doubly periodic (elliptic) Weierstrass

function r!(z); _(z) --zeta-function of Weierstrass (Ref. i). The functions

_a and _s' respectively, determine the stress state of the glass filaments and

the resin filling the space between the filaments. The unknowns a2k and C2k

may be determined from the coupling conditions at the resin-filament boundary
in the case z = T = %e 10

Vo(., t) + _. (., _} = ,p,(., :) + _, (_, t), _. (., 0 -- vo (., t) = (6)
G*

= _-(_,(_,0 --_,(,,:)

stresses may be determined by means of the mean <Tik> I. In particular,The real

2
the stresses in the glass filaments are

2 _'_,,) 2 (,,,) _'s
....................... "q_ = I + _+ nG*/Ga 4 1 q-%+ ,,G*IGa _ C2a+2X2k+_ctO'* "_-

k-, (7)

+ 1 -- o'/a= C_,+2cos 2kO + i -- o*/oo Lk-f] _._,+2sm 2kO.
k--I k--I

Here _, _ is the volumetric content of the filler and the binder in the

composite material; _ = r ; r0 __ filament radius; _i,k -- expansion coeffi-
% ro

cients of the function F(k) in Laurent series. The distribution of stress
_z)

at the resin-filament boundary in the case of _ = 1 is of the greatest interest.

It follows from the above formula that

n, = k_(n,)+ k_{n,). (8)

where kc, k' are the coefficients of the stress concentration in the materialC

structure, which indicate an increase in the real stress as compared with

the average stress. The stresses on other areas may be determined in a

i
Since the filament diameter is several micrometers, the linear dimensions

of the averaging area must be on the order of tenths of a millimeter.

2
For considerable stress gradients, we must take into account the moment

terms of the expansion of the stress and deformation tensors averaged over

_the area.

/68
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If the quantities a2k and C2k are determined, the values of
:similar manner.

the moduli-operators may be found according to the following formulas

X_=l/O_s _ +(n+_)(;*/G° l= l+_+_6°IGa '_--

2_(I-- 6*/6a) • I "

_., (9)

X.:, = l/O. -- '_+ (1+ _) G*/Ga 1-- i + _+ _G°/Ga G° +

(I- 6"/(7,,) I '_,
+ i T _7--_-_7_ " _ __ C;k+=_2"+=ao.i.

k--I

Attention must be called to the fact that the modulus-operators G* and G*
12 _I

G* and G* will also change significantly with time.
12 31

In order to determine the stress state and the moduli under the influence

of the stresses <_23>; <Oli>; <022 > and <o33>, we must derive new functions

Q(z) (Ref. 9) in order to simplify the solution of the problem:

E'{ _ _ --_1. ll=mw,+nu_.lQ(z)= (z--m, 2z_i - _ " !

The total solution of this problem may be divided into the sum of the

solutions of the following problems: plane deformation of a body made of a

viscoelastic material with elastic nuclei, and the stress state of a bar when

it is loaded by forces in the reinforcing direction.

The desired functions will be found in the form of the expansion

• °(z.t): f: a,.(t)z,n; t)= b,n(t)
nmO _ n_O l

and also for the binder

(i0)

_,(Z, t)-----Co(t ) 4" C2k+2(t) (2k-+-i)l ;
*,-0

_] X2k+: l" * (z)_': (z, t) -- do (0 4- d_+= (f) (2_ -I- i)l
k--O

)2_+_ Q(_e+j) (z)-- C2k+_10 1_+ n)_ •
a,,, 0

(11)

The unknowns d2k; C2k; a2k; b2k may be determined from the boundary

conditions establishing the stress equation at the resin-glass boundary:

= _), (_. t) + ,_s(_, t) - 1_(_7(_, t) + _, (_, t)l e".
(12)
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as well as the deformation equation

(I -- _* I_o) ¢° (_, 0 + (l + _°_*/o°) ¢,o(_, 0--

-- (1 -- G*/G,,) 1_¢, (_, t) + % (:, 01e2" = ("* + 1)¢,, (:, t)=
(13)

All the real stresses within the material are related to the average

stresses by formulas such as (8). The coefficients of the stress concentration

in the material structure depend on _, q, the mutual location of the filaments,

the relative rigidity for the displacement of the resin, the glass filaments,

etc.

The explicit values of the modulus-operators may be

in the case of the specific functions _ ; _ and _ , _ .
a a s s

have

X*= = 116='3 = x._ + (l + :_*_)G'I6o !

-- _q- x* q- _G*IG,, " _; C_+2)'=*+==i. i --
k--O

--_('k-_2)C2_+2_2'+2p0., _L_d2k÷2_"+2.O.,l. .

k--O k--O "" "

immediately determined

In particular, we

(14)

The general form of the relationship between the stresses and the mean
defo_Ntlo_hree-dimensional stress state is

(e,=)= X_ (_I=);(e=,)= X; (_=,);<_s=)= X_ (_,,);

(e,,)= Xn (oi=)+ X,=<a=,)+ Xls(ou);

(,==) = X=, (o.) + X. (o==>+ X,8 (%,);
('a,) = X:l (o.) + X_=(o==)+ X,, (o,,)

(15a)

(lSb)

(15c)

(15d)

The values

remaining

of X_, X_ and X_ may be determined by formulas

modulus-operators may be found in the following

(X_,)-' = _,, + _E* +

_q- (x* + !) _, C_,+=),2'+=,,o. k
k-I

+ 8_6"('_,--_,*)' i +_+_:,*+,i(_,-- _)o*/6= '

X,*, = X_, I-- "* + ('_* + _) ('= -- '*) (Co-- _C,)};

X_, = X,*, I-- _* + 0'* + _)(' --'*) (Co+ _C,)};
X_ _ *= _ (,, + _)(Co-- _C; + 1) +

Jr X_,Y* [,,* -- (,,,, -- _,*) (,c* + 1) (C;-- _C; )'};
i

x;, = _-_ {(,,* + _) (Co+ _c,) + ,,* -- 3} +

+ x*,Y* {,,* -- (,,,,-- ,,*) (,,* + 1) (c; + _c_)};

= _-_ (_* + I) (Co+ _C, + I) +

(9) and

form

(14). The

(16a)

(16b)

(16c)

(16d)

(16e)
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-5X_Y* _* -- (v=-- v*)(x*-5 I)(C_ -5 _C_)};

V* = _* + @° -- _'*)(_-- _Cu + _,_ C_k+2_2_+_ao.k).
k--O

i
(16f)

(16g)

These formulas clearly illustrate the dependence of the modulus-operator

on the inner structure of the material and the viscoelastic properties of

the binders and the mechanical characteristics of the fillers. The form of

relationships (15a) - (15d) coincides with the equations of Hooke's law for

an orthotropic body, which may be explained by the structural symmetry of the

material with respect to the coordinate axes. Formulas (16a) -(16g) must be

simplified in order to compile equations for the theory of shells made of

glass-fiber reinforced plastics. Experimental investigations on a homogeneous

polymer have shown that the Poisson coefficient 0.385 < _ < 0.42 -- i.e., it

=may be assumed that the operators X_I, X_I change very little with time for

reinforced plastics. The portion of loading which may be received by the

resin on the surface x I = const, is very small. With sufficient approximation,

we may therefore assume that the modulus operators X_k , with the exception of

X* and X_3 do not change with time The instantaneous (elastic) values of the22 '

moduli were compared with experimental data. The greatest deviation was

observed for X_I, which may be explained by the influence of uneven tension of

the glass filaments; the remaining moduli values satisfactorily agree with the

experimental results.

Shells made of non-tissue, glass-fiber reinforced plastics were prepared

by the method of consecutive super-position of layers reinforced in the

direction chosen. Materials with glass-filaments which were oriented

perpendicular to each other received the greatest propagation (Figure 4). For

the case of moderate intersection stresses, thin shells were investigated on

the basis of the theory of laminar shells (Ref. 2), in which the Kirchhoff-

Love hypothesis is applied for the entire packet as a whole. If a uniform

stress state is given in the shell, a local stress state with a large vari-

ability coefficient arises around the hole (Ref. 7, 8). In order to study

the stress concentration around a hole, let us introduce a local coordinate

system e, 8, which ,may be regarded as a plane system for a sufficiently small

hole. The basic system of differential equations for studying the stress

concentration around holes in shells has the following form (Ref. 2)

L,(D_--D_) " *
w -- Ls(d#) ? -5 Vh? = q; (17)

L, + L. w-- = o,

where w and _ are the functions of bending and stress. The mechanical

characteristics (16a) - (16g) are employed to determine the operators. It

may be seen, in the general case the system of equations (17) for a plate

(in the case Vk = 0) does not decompose into two independent equations. For

material which is composed of layers symmetrical to the middle surface, the
main system of equations assumes the form

/7__!I
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Figume 4

L, (D_l) w + EFk? = q;
• (18)

L= (A;i)_ --V,w ---0.

For rather small holes, when we may disregard the influence of the

middle surface curvature, the stress concentration around the hole may be

determined from the solution of the following equation, in the case of uniform

membrane stresses in the plate

o 'fB'°: (A;,)+ o8[j(A;,)--:(.4;',)I'_ o_" X[ _ _ --T'o} :(A-)--="

-- T" T=J (A_,) -- J (A_O _ ----O,

where the following notation is employed (Ref. 2)

By way of an example, let us study the stress concentration around a

circular hole in a plate which is reinforced in one direction in the case of

uniaxial tension. For the given case, equation (19) in Cartesian coordinates

_, 8 assumes the following form

5
' _If we Set

x,; + (x: +2x..} a., x a,,o-_p + ._=0.

x,, = l/E,; X;, = l/E;; X: = l/G'; X_,/X,,=--4,

(20)
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Figure 5

then the form of (20) coincides with the resolvent in the theory of orthotropic

plates (Ref. 3, 6), and the integral operators play the role of the coefficients.

A solution of this problem in the elastic region was obtained in (Ref. 3, 6)

based on the theory of the function of the complex variable zI = _ + SI_ and

z2 = _ + S2B , where

In order to study the stress concentration around a hole in a viscous

elastic body, the mechanical characteristics must be replaced by the integral

operators in the final formulas obtained for the elastic problem. The

solution of the integral equations compiled makes it possible to determine the
change in stress with time.

The normal stresses <o > acting upon radial regions are as follows at

the hole profile;

_;._= x_{Vx.x';,x,_,o+
" " x:x,,)_i..},+ (x,,+ V'_x,,(x,,+ x,o+ o.z (21)

where we set

X_' = Xu sin _ B + (X_' + 2X2_) sin _t) cos' B + X_ cos4 B.

If the uniform stress state does not change with time, then -- by

employing the known approximations for the function _i_%(-_, t) (Ref. 5) --

we may determine the stress redistribution in time directly from (21).

On the basis of experiments, we found E = 0.981-7-105 bar; _ = 0.2,
a -k a

k = 0.5; _0 _ 0.4; _0 = 0.057 h-X; K = 0.177 h ; E0 = 0.981.3.104 bar.
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!Figure 5 presents the results derived from a numerical calculation of the
stress <oO> along the hole profile (in the case _ = 0.74). Curve I is given

for isotropic material, II -- for glass-fiber reinforced plastic in the elastic
region, and III for glass-fiber reinforced plastic 500 hours at the loading
o = const. The real stress in the material maybe represented in the follow-

ing form

For glass-fiber reinforced plastics, kc depends slightly on time, and k0
changes significantly with time, as maybe seen from Figure 5.

An investigation has shownthat at point A (see Figure 5) the stress
oO is primarily absorbed by the glass filaments. In this region, kc _ 1 for
the filament, at the point B at the resin-glass boundary the largest value
k = 1.47 occurs.

C

Thus, the stress concentration around a hole in synthetic materials such

as glass-fiber reinforced plastics may be determined by the curvature of the

hole profile and by the surface curvature (for shells), by the material

anistropy, by the viscoelastic properties of the glass-fiber reinforced

plastics, and by the structural coefficient of the stress concentration k
c

characterizing the stress distribution in the material between the filler and
the binder ...................
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--' ELASTOPLASTICSTATENEARA REINFORCEDHOLEIN A SPHERICALSHELL

V. V. Vasil'yev_l.S. Chernyshenko_,>_ / ) ....L_

(Kiev)

67 " t 50
Let us investigate the stress state and state of deformati in the

_zone of stress concentration around a circular hole in a spherical shell

subjected to internal pressure (Figure i). The spherical shell is changed in-

to a circular, toroidal shell close to the hole, and is reinforced by a

:narrow elastic ring. Only vertical stresses are transmitted from the lid

covering the hole to the ring.

/7_34
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The solution of the problem beyond the elasticity limit is based on the

theory of small elastoplastic deformations, the method of elastic solutions

(Ref. 3), and the method of finite differences.

The axisymmetric, elastoplastic state of the shell of revolution may be

described by the following differential equations (Ref. i):

m,ou + mnu' ÷ m,_u" "-I-n,ow "-F na,w' q- nl2w" -- w" +

q- A'D-aX + _u _ O;

m:ou -_ m21u' .q- m2lu" -+. n2oW -_- ?IIIW" .-_ n22w" .-I-nSalCJm-- wlV J¢-

+ A'D-IZ + _!. ":- O.

For a constant meridian curvature and incompressibility of the shell

material, the coefficients of the equations may be determined by the following

formulas

,n,o --6r_' (B" -- 2B") -Jr0,5 (£_ --B'_;); m,t = 12-qs_ ' + 0,5_,

,nl2 = 12T,'; hi0 = 12ar_S/_'(1 --k2) + 0,5B'(k[-- 1)-- k,k_;

nt, = 12,,' (1 :-t- 0,Sk_) -- 0,5 (B° "-I-k:) + B" -- 1; n,, ---- -- B';

m=o= - 6_,=_'(l + 2-k=)- 0.5 (_'_ -- _=");

m2] = --6"r=' (2 -t- k=) "t- k; ; m== = 0,5£; ;

n_o= -l 9._t(l + _ + _) + o,sN" (_;-- ,) - _': _ _;:
n,, = _' (2B"-_"- 1)- 2_,_;; n,, = _"- o.5(3_" + _: + 2);=

n,, = "2_', i

where

A e.h. e- _,=A_=, _;=A_. k; Ak;'.-_= -£, _' =_-, =_, , =

The following notation is also employed in these equations: u, w, X, Z --

components of displacement and loading intensity, respecitvely, in the

direction which is tangent and normal to the shell meridian; D -- cylindrical

rigidity; A, B -- coefficients of the first quadratic form; _2 -- principal
curvature in the peripheral direction; h -- shell thickness.
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For the spherical shell, we have (see Figure i): A = R , B = R sin 4,
-i c c

k 2 = R c , and for the toroidal shell we have A = RT,

B = (t + sin _) R,, k, = B "'s sin ?. t = aR_'. i

The expressions for the non-linear portion of the equations have the
following form

Q. = A3D-1 [B' (AT1 -- &Ts) -I- AT_ + AQs];

g. = A'D -l 1-- (AYs + k2_Y,) + B'AQ, + AQ_I;

• ATI = --12D_ A-s [_Js (El + 0,5ea) + A J, (z I + 0,Sxs)];

ATa = --12D_A -s [_J, (h + 0,Se,) + A Jr (z, -I- 0,Sx,)];,

AGx = 12DA -x [_iJz (el + 0,5_2) + AJs (x,+ 0,Sxa)];

AG_ = 12DA -1 [_Js (es + 0,5e0 + A J, (xs + 0,5xl)];

,_q_= A-_ [_' (aO, -- aG,) -- aG_1;
0,5 0,5 o,s

s s ! •J, = todd; J2 = to_d_; Js = o)_'d_; _ = "_.
--0p5 --0.5

Figure 1

shell far from the perturbation zone.

:_ -w%_.r_ -

Here eI , e2, XI, X 2 represent

the deformation of the middle surface

(Ref. 2); _ -- plasticity function of

l l'yushln (Ref. 3); _ -- relative

coordinate with respect to shell
thickness.

Two compatibility equations of

the ring and shell displacements and

the equation of the ring equilibrium

are the boundary conditions for the

reinforced edge of the torus. The

compatibility conditions for dis-

placement and equality of the internal

stresses in the associated cross-

section of the sphere and the torus

yield six equations. A membrane

state is assumed in the spherical

The meridian and circular stresses may

be calculated according to the following formulas

o_ 4E(t -- .) (e, + 0,5e=);= 3

°2 4E(I -- .,) (e2-I- 0,Se_).= -_g---

ex ---- et-_- xxz; e, ---- % -_- z2z.
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The elastoplastic state of the system was studied in the case R : h = 400,
C

R : h = 13(3), R : R = 0.03(3), P: R = 6.5, t = 7.5, _0 = 0.244360, FK: p2 =
_T T c

= 0.0133136, JK: p4 = 0.169593.10-4, where FK, JK represent the area of the

ring cross section and the principal moment of inertia with respect to the

horizontal, central axis. The material of the shell ring is steel Sp 3

(Or_ 200 Mn/m 2, e r = 0.001, o T = 240 Mn/m 2, eT = 0.006). The curve given in

the figure has a smooth transition in the deformation range 0.001 - 0.006.

The finite difference equations of equilibrium, of boundary_ conditions,

and the associated conditions were compiled for the step of the independent

variable % = 0.436332"10 -2 rad for the sphere, and k = 0.0736905 rad for
s T

the torus. The step magnitude was selected by comparing the solutions for

different steps obtained for a spherical shell with a reinforced hole. The

step for the torus was taken so that the lengths of the arcs of the sphere

and the torus, corresponding to the assumed steps, were approximately the

same.

The membrane boundary conditions

for the spherical portion of the

system were assumed at a distance of
21R % from the associated cross-

c C

section with the torus.

Figure 2

The numerical solution of the

problem was obtained on a high-speed

electronic 2M computer. The program

compiled included the calculation

of the coefficients of a system of

finite difference equations, the

right hand parts, the nonlinear part

of the equations, and also it in-
cluded subroutines for individual

parts of the calculation when the

problem was solved by successive

approximations. A standard program was

developed in the Institute of Mech-

anics of the USSR Academy of Sciences

by M. I. Dlugach and A. S. Stepanenko

for solving an asymmetrical system of

linear algebraic equations having a
band structure.

_:_ i The numerical results of the solu_on are presented in the form of curves
; °

!-showxn.g the change in the stress intensity o. for an internal pressure of
' 1

_ 0.1 to 1 Mn/m 2 (Figure 2). The arc of 'the system meridian, beginning with

_ the ring, is plotted on the abcissa axis. One division within the torus

(18RTX T) corresponds to an arc equalling 2RTk T, and within the sphere 2R X .
_............ C C

eTranslator's note: This' probdb_iy designates "reinforced".

71
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The solid line shows the change in o. on the inner surface of the system, and
i

_the dashed line shows the change on the middle surface. The curve o. on the
1

outer surface almost coincides with the curve on the inner surface, and

therefore is not shown in Figure 2.

It may be seen from the graph that o. on the middle surface of the torus
i

in the region adjoining the ring is considerably lower than on the outer

surfaces of the shell. Thus, for a pressure which produces membrane stresses

_close to o T in the sphere, °i is less than o .r

The table presents the ratio of the smallest stress intensity to the

membrane stress fS_-the toroidal(_) and spherical (ks) parts of the system

and the largest deformation intensity existing in the system for certain

pressures.

(I

k T

kc

el" I0'

p.Mn/m 2

0, I 0.4 0.5 0,6 0.7 O,S 0,9 [ I,O I,!

4,_ 2,82

1.82 1,70

0,047 0,21

2,33

1,68

.0.31

1,98 1,71

1,b'7 1,49

0,41 0,56

1,50 i ,33 ! .20 i ,09

!,39 1,28 1,17 !,08

0,68 0.89 1.1! 1.34

(i) - Characteristics

The greatest stresses arise in the associated cross section of the torus

and the ring. The stress concentration in a spherical shell is somewhat

smaller. The distance between the concentration coefficients for the torus

and the sphere decreases with an increase in pressure, and their magnitudes

sharply decrease.
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w SLIP BANDS IN THIN PLATES WITH RECTILINEAR CUTS UNDER TENSION u,

_e. M. Vitvitskiy / /_ _5

N 67--2.450
Plate with two equal slits. Let a thin, infinite plate Lth two equal

rectilinear cuts (narrow slits) along the segments (-b, -a) and (a, b) of the

abscissa axis be pulled at infinity by the stresses o_ = p (Figure i). We shall
Y

assume that the plate material is isotropic, elastic-ideally plastic with a

flow limit under simple tension OT. The condition of constant, maximum,

shearing stresses

I
(.,, = _ a, (i)

/7__88
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is assumed as the plasticity condition.

As is known, due to the fact that there no limitations on the stresses,

at the ends of the cuts the elasticity conditions cannot be satisfied for any

small loading (except for p > 0). Therefore, plastic deformations occur here.

Experiments have shown (Ref. 2, 5) that plastic deformations during the

first stages of their development are localized in narrow slip bands occupying

an insignificant area as compared with the elastic portion of the body, when

there is a sufficiently nonhomogeneous stress field. This development of

plastic deformationsisparticularly characteristic for materials having

a well defined flow region.

In the case under consideration, we shall study the development of the

first slip bands formed in the vicinity of the cut ends.

We shall employ the following method (Ref. i, 6) in order to study the

development of slip bands analytically. In view of the small width of these

bands, we shall assume that the plastic deformation is concentrated along

certain lines. We must thus assume a displacement discontinuity on these

lines. The assumed displacement discontinuities must not contradict the

plastic flow mechanism which is kinematically possible and need not imply the

presence of cracks (cavities) in the body, if the cracks are formed as a

result of plastic deformation -- i.e., if the material remains compact. In

thin plates, discontinuities which are both tangential and normal to the dis-

continuity lines can satisfy these requirements. In the case of a normal

discontinuity, the disturbance of the compact nature of the material may be

due exclusively to local modification or thickening of the plate.

/7__%9

Thus, the local nature of the development of slip bands means that the

! problem of the elastic-plastic equilibrium of the plate may be reduced to the

_'r _ problem of the equilibrium of an elastic plate whose displacements undergo

a discontinuity along specific lines. The stresses acting along these lines

must satisfy the plasticity condition. The form and length of the discontinuity

lines (slip lines) are not known ahead of time, and must be determined as the

problem is being solved. In several special cases, the form of these lines can
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Figure i

be predicted. The solution of the problem is then significantly facilitated.

In our case, the first slip bands are propagated along the extension

lines of the slits (along the line y = 0, Ixl a a, Ixl _ b), where, as is

known from the elastic solution of the problem, the stresses are maximum, and
we have

%(x,O) > a_(x,O) > a_(x,y) = O: %(x,O) = O. (2)

In view Df th_Se relationships, the plasticity condition (i) on the

abscissa axis assumes the following form

%(x,0)= a,. (3)

The slip regions coincide with the Ox-_xis, and are inclined at the angle

45 ° to the plate plane. As a result of the shifts, local modification of

the plate arises in certain segments of the abscissa axis c _ Ixl _ a and

b _ |x I _ d, which are occupied by the first slip bands.

c

_"where

According to the statements given above, we may reduce the problem of

the development of these bands to the problem of the elasticity theory with

discontinuous displacements v(x, 0) on the segments c <__|x I <__a and b < ixI <__

<__d, in which condition (3) is satisfied. Let us deal with this problem,

continuing the slits in these segments and applying the stresses o (x, +_ 0) =
Y

= o T to the edges of this continuation -- i.e., investigating the extension

of the elastic plate with cuts along the segments c < lxl __<d under the

following boundary conditions:

ton%u=(t, +O)=Ofort onL, oult, -l-O)=p(t)= oTfo r t on " (4)

L (--d,--c) + (c, d), L' = (--b, --a) 4- (a, b), L" = L- L'.

/80
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The ends of the slip bands -- i.e., the points Ixl = c and Ixl = d --

must be determined so that the condition of the boundedness and the continuity

of stresses is fulfilled.

In the book by N. I. Muskhelishvili (Ref. 4), the general solution of the

first main problem for a plane with rectilinear cuts is given by two complex

f_nctions @(z) and i_(z) which have the following form in our case

P,(z) t , p, (z) !
(I) (z) ----¢o (z) -at. X (z) 4 p' g (z) ---- go (z) -t- _ + _- P

(z = x + iy), (5)

where

• I• I (6)
x'+(op(Oat 2,ax (z)LJ" Y_- , /

= % _ X + (t) dt" ;

P, (z) = cO s + czz Jr" ct, co == _ p.,; X (z) -----V (# -- cs) (z" -- #)"• (7)

The quantity X(z) is used to designate the branch which is holomorphic

in the plane with the cuts, so that X(z) ÷ z2 in the case Iz[ ÷ _.

The coefficients cI and c2 may be determined from the equation

'Ps(t) j., _" ) (8)

where LI = (-d, -c), L 2 = (c, d), and the indices + and - designate the bound-

ary values of the quantities when approaching Lk from the left and the right,

respectively.

Calculating the integrals in formulas (6) and (8), we obtain /81

", {¢'o(z)= _o(z) = _ V(_'-_')(_,-d,) V(a'- c') (# -- a') --

-- ( --2='+ d'q- c'__V.(bS__cZ)(dS__b,) d'+c' 2z' =+arcsi n
2 d s -- ta

• --2b,+#+_
-- arcsm _ _ ) --

-- 2 V (z'-c=) (d'-z=) In [ l/ (z=--cD (dr--at) -Jr"V'(dt--z,) (a'--c')i l/'b-t--#l.
[ V (z'--c') (dt--b') -I- V (d t--z') (b:t-'-c')] V_J '

Cz -----O;

(IT Ic,= _ V(d' -- a,)1.,- e) - V ld' -- b,) (b'--c,) +
dt -'l- ca[ - -- 2at -l- dS-J,-dl 2bS.Jr dS..I-cs'_l "

+ --f,- _-- _, + arcsin d_-- c' -- arc_in -- d" -- e' /1

(9)

(10)
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X m

where F, E, H designate the complete elliptic
: /d2- c2
and third types, respectively; k- d

{ [ o_( __,+_q__ "_d dE (k) co "t- -- = q- arc.sin.

-arcsin a=-- c= /J + _ V'(ds -- b=) (b= -- cS) X

b, _( __O k)°,d (d' -- b') ' a_ -- b=' -- = ]/(d= -- a =) (a t -- ct) X

X d (ai -- a') d s- a" '

integrals of the first,

The stress field may be determined from the following formula

o, -- o_+ 2i% = 2 [_ (z---_- • (z)-- (z -- _)_' (z)! (_= x -- tu).

(i0)

second,

(Ref. 4)

(ii)

Based on formulas (5), (7), (9), (ii), we may readily show that we must

set the following in order to insure the boundedness and continuity of the

stress at the points z = ! c and z = ! d:

--_ -4-arcsin d'--c' -- (12)arcsm a' c' ] + Co = O;

°" _ + c'
....... 2-_IV (a,- c=j(a, - aD --V(b' - c,j (a, -- b=)l+ -T- Co+C,=O'i

1
Substituting the values co = 2 p and c 2 from formula. (i0), after several

transformations we obtain

._p

(at -- ct).cost _, = a' :t- b' -- 2c' -- 2 If(at -- c°) (bt -- c') sin"_"p;

If(a, -- a=)(a' -- d') [F (k) o, a,_

,)].d= -- b= ,

I (13)
I
i:

J
I

The length of the Slip bands is determined by these equations.

The functions (5) have the following form when equation (13) is

l
(z) = g (z) -- 3- p =

°'r [ V(Z = -- c=)(d' -- a') + l/(d' -- z=)(a' -- c=)] V'b'i"'_=_--zs p=----.In
I 1/(z' -- c=)(a=-- b') + i/(d' -- z') (b' -- c=)l Vz=--_ -- 4""

satisfied

(14)

Let us

_ ! l.e., c = O.

investigate the case when the inner slip bands are combined --,

We obtain the following directly from the first equation (13)

_P V " eP 'd = see_ a'+ b'--2absm 2-_.

(15)

/82
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The second equation in (13) may be transformed to the following form I

after expansion of the indeterminate form in the case k = i:

(16)

d

Eliminating _ from equations (15) and (16), we obtain the relationship

for determining the loading p -- P0' at which the inner slip bands are com-

bined :

b -*Po a' _.. sin_PT, --

,= ch [_-arch (sec _oP°F_-t-'- 2 _ sin _,-_p) ] .

A graph showing the dependence of P0-- on--

o T

b - a

a
is shown in Figure 2.

(17)

In the case p > P0 (for each given b ) the length of the outer slip bands
= a

may be determined by formula (15). It may be shown that equation (16) must thus/83

be replaced by the inequality a " _ ==oh arch which expresses the con-

dition v(0, + 0) > 0. This inequality is satisfied identically in the case

P>P0"

After the slip bands are combined, the functions (14) have the form

! °--'.in [z V_"_--- b, + a prff'-- z'! _ l
q_(z) = -o (z) -- .-f p=-- [z Vd'--b'+b V_l Vz_--a "-.Tp" (18)

6T \

%

0 2 # 6 _q

Figure 2

1 We should note that when _ is a whole number, the right hand side of (16)
a

is a Chebyshev polynomial of the first kind.
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The solution which is obtained pertains to the first stage of elastic-
plastic equilibrium of the plate, when the slip bands are propagated only
along the abscissa axis. However, for a certain loading, new slip bands arise
at the ends of the slits; these slip bands are inclined at an angle to the
first ones (they are shownby the dashed line in Figure I). This is the second
stage of elastic-plastic eqiulibrium of the plate. Thenew slip bands are pro-
d_ced when the maximumshearing stresses Tmax 0.51o - o + 2iT I, whichy x xy
are in operation in the regions perpendicular to the plate plane, reach the
flow limit in the vicinity of the slit ends. These stresses may be found from
the second formula in (ii) substituting the function (14) in it, assuming
z = ! (a + re iO ) or z = ! (b + reiO ), and determining the maximumstress as
a function of O in the case r ÷ 0. As a result, we obtain

2
On the basis of the formula ctg 2a = TxY as well as formulas (ii) and

y x

(14), we may show that these stresses influence the regions whose angle of

inclination _ to the abscissa axis fulfill the following relationship

tg2_=--_Po-'$ (_<:_ _). (20)

Based on the condition of plasticity (1), we find from equation (19) that

new slip bands are produced at the loading

p, = OT V ] --_ _-_.0,600,. : (21)

It follows from formulas (20) and (21) that the initial angle of inclination

of the new slip bands is

I

= = _ [_ -- arctg _ (_ --2)] _59 °. (22)

Plate with one slit. Assuming that a = 0 in formulas (15) and (18), we

may solve the problem of the slip bands when a plate with one slit having the
length 2b is under tension. In this case, we have

d : b s_ _-_-P;
zo: (23)

"T b V__ Z V_ |

(z) ' _ (O--_p = --_/ln; Va2_z,+z V d__/..____b, --Tp. (24)

The loading at which new slip bands appear at the slit ends, and the

angle of inclination of these bands, are determined by the formulas (21) and
(22).

This solution coincides with the solution given in (Ref. i, 6). We

should note that the development of slip bands when thin plates made of a

soft steel with one slit are under tension has been studied experimentally

(Ref. 3, 6). Experiments have substantiated the development of plastic de-

formations arising from the analytical solution. The slip bands first

/84
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appear on the extension lines of the slit, and newbands directed at an
angle to the first ones are produced at a specific loading.

i

-Q -C F

Figure 3

C 0

Plate with two semiinfinite cuts.

Let us investigate the development of

slip bands in a plate with two semi-

infinite cuts on the abscissa axis

subjected to tension at infinity along

the Oy-axis by stresses whose principal

vector equals P (Figure 3).

The solution of this problem may

be obtained from formulas (5), (7), (9)

and (i0), assuming that b = d + = and

also assuming that the stresses vanish

at infinity (p ÷ 0), so that the

product pd remains bounded. As a

result, we obtain

¢ (z) = _ (z) = - _:. In

A (25)

"4- i gzS--Z_ _ , i

where A is a certain constant. This constant may be determined according to

the well known (Ref 4) equation lim z _ (z) = - iP from which we obtain

P z->_ 2_
A -- --

2_ "

We obtain the relationship for determining the length of these bands

/85

c=a 1--

(26)

from the condition of boundedness and continuity of the stress at the end of the

slip bands (at the points Z = ! c). When this equation is satisfied, the

functions (25) assume the form

*, v_-r=7-_'- V'_-,--_
o (z) = _ (z) = -- _ in Vz'- c,+ 1/a-i'='--_ "

(27)
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. PHOTOELASTICINVESTIGATIONOF STRESSCONCENTRATIONSNEARA CIRCULAR /86
HOLE IN A HYPERBOLIC SHELL t<

_ Yu. I. Vologzhaninov, V. I. Savchenko, M. D. Fenchak _ ]_!'_ _

(Kiev) N67-a4510
The purpose of this article is to determine the nature of the stress state

in a shell which is a one-sheeted hyperboloid of revolution having constant

thickness. This shell is weakened by a small circular hole on the neck under

axial compression.

The study employs the photoelasticity method with the use of "freezing"

of deformation and subsequent sawing of the hyperboloid model into sections

(Ref. i, 3). The hyperboloid is made of an optically active ED6-M material.

The geometry of the hyperboloid was determined by defining the outer
surface

x'+ y'--z'=

The outer diameter of the neck is DI = ii0 mm; the radius of the middle

hyperboloid surface on the neck is R 0 = 52.5 mm; the hyperboloid thickness is

h = const = 5 mm; the hole radius is r 0 = 4 mm; and the height of the hyper-

boloid is H = i16 mm.

The hyperboloid model was compressed with a force of 324 n in a lever

device between two steel plates. The freezin_ temperature and the optical

constant of the material at the freezing temperature were determined on a disk

whose diameter was compressed and on a band which was extended:

7" = 116°C; C = 1'77 • 10 -v cm2/nl.

Figure i shows two sets of the sections being studied I, II which are

perpendicular to each other. The normal translucence of both sets of sections

and the measurements of the corresponding polarization angles _, as well as

the difference in the behavior of 6, were determined on a KCP-5 polarization

device by means of a Krasnov compensator.

Principal 8tress state. The pictures of the bands during continuous radio-

scopy of a "frozen" hyperboloid near the hole and far from it indicate that

the disturbance of the stress state is localized. An investigation of both

sets of sections located far from the hole has substantiated this. Therefore,

in view of the axial symmetry of the principal stress stat% normal radioscopyof

sections I of the set in the direction of the 8 axis has provided the differ_

ence in, and direction of, the main stresses in the £r plane. Normal radio-

scopy of sections II of the set in the direction of the £ axis has given the

difference in, and direction of, the principal stresses in the r 8 plane.

Radioscopy of sections in the first set was performed at points of the

lines which were normal to the middle surface of the hyperboloid (Figure i).

/8_/7

80



f 5 _

• _ . a .

Figure i

(a) - 1st line; (b) - 2Sl_ line;

(c) - llth line.

There were twenty one lines in

each section, and six points, includ-

ing the contour points, were measured

in each line. The parameters of the

isoclines along the section lines

were constant everywhere, except the

lines directly adjacent to the contour

(first line and second line), and

corresponded to the section geometry.

Thus, the parameter of the large princi-

pal stress equalled a. (see Figure i).
1

Consequently, or and og were the princ_al

stresses along sections I of the set.

The stress o was determined on the
r

neck by numerical integration of the

second equilibrium equation in

cylindrical coordinates (Ref. 2). The

maximum value of o did not exceed 3%
r

of o£. When the stresses or were dis-

regarded, it was possible to obtain the

principal stresses o£ and o 0 directly

by normal radioscopy of sections I and
II of the sets,

The stresses Tg, computed on the basis of the stress og which is thus

obtained, satisfy the static condition with an error of 3-5%.

189

Figure 3

- -- L/cln

The values of og, Oe, as well as

the stresses Tg and Te computed on the

basis of these values, characterize the

principal stress state and are given in

the table. The corresponding diagrams

are shown in Figures 2 and 3.

Stress state around the hole.

Two holes at the ends of one diameter

are drilled in the neck (z = 0) in

the hyperboloid model. The distribu-

tion of forces and stresses around

the hole may be obtained by interpret-

ing the picture of the bands (Figure

4) obtained by continuous radioscopy of a portion of the frozen model with a

hole, and obtained during normal radioscopy of the sections I and II of the

set cut out around the hole.

A picture of the bands around the hole shows that the disturbance of the

stress field, caused by the hole, is localalized. Figure 5 shows a cross

190
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(I) Section line number; (2) distance; (3) stress.
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Figure 4

section of the model in the sections I and II with the hole.

Radioscopy of section I enables us to obtain the stress distribution _
over the shell thickness along the lines which are located at distances of
z_ = u.h (h -- shell thickness) from the hole profile. This is shownin

Figure 6. Similarily, by employing section II, wemay obtain the distribution
of _ over the hyperboloid thickness along the lines which are located at
distances of s. = v°h from the hole profile over the arc of the middle line

of the neck. This distribution is shownin Figure 7.

Figure 5

By knowing _£ over the section

I and _ over the section II, we may

compute T£ over the section I and T8
over the section II. If we determine
the bands of T£ - T8 in both sections
on the basis of the figure, we may
find T£ and TO. The distribution of
these forces over the sections I and II
close to the hole is shownin Figure
8. It may be seen from the graph that
even at a distance equalling the hole
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(a) - ist line

diameter the forces T_ - T e along both lines of the main hyperboloid curvature

coincide with the principal stress state, within an accuracy of the experiment.

The distribution of the forces along the hole profile is shown in Figure

9. The solid line represents the experimental points obtained from the pic-

ture of bands around the hole.
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Figure 7 The distribution of forces over the /92

hyperboloid hole profile may be com-

(a) - ]st line pared with the distribution of forces

over the hole profile in a plate which

is compressed at infinity by the forces T£ and T o corresponding to the principal

stress state (Ref. 4). The calculated curve is shown in Figure 9 by the
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Figure 9

dashed line. The ratios of the maxi-
mumforce on the hyperboloid hole pro-

fil_ THmaxand Te, of the principal stress
state and the maximumforce on the
hole profile of the plat_ TP_ and Temax

TH Tp_
max maxequal: - 2.88, - 2.45. How-
Te Te

ever, these numerical results must be
further refined, since the experiment
was performed on only one model.

The following conclusions may be
drawn from this experimental investigation of the stress state of a shell
having negative Gaussian curvature:

i. The disturbance of the principal stress state of a shell, which is
caused by a hole in the shell, is local.

2. The stresses ok and oe over the shell thickness change according to
a linear law both close to, and far from, the hole.

3. If we know the principal stress state, we mayobtain anapproximate value
for the force concentration. This maybe done by comparing the stress state

around the hole on the hyperboloid neck with the stress state of a plate
loaded at infinity by forces equalling the force of the principal stress state

iof the shell.

_4.

The authors would like to thank aoademician G. N. Savin of the USSR
Academyof Sciences for formulating the problem and for valuable discussion of
the results.
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DETERMINATIONOFSTRESSCONCENTRATIONONTHEBASISOFAPPLIEDTHEORY /93

(Annotation of the Report) _

_I. I. Vorovich_ O. K. Aksentyan ,_/_ H67-24511
(Rostovn_ Donu)

This report investigates the possibility of employing the equations of

applied theory for plate bending, based on the hypothesis of Kirchhoff, for

calculating stress concentration. A plate limited by a cylindrical surface

F1 and having a hole which is limited by a cylincrical surface F2 is investi,

gated. It is assumed that the hole diameter and the distance between rI and

F2 are large as compared with the plate thickness. It is assumed that the

surface F2 and the lplane edges of the plate are free from stress, and that the 1

surface F1 is loaded with a certain system of stresses. __J

The authors base their discussion on relationships given in the work by

A. I. Lur'ye I which express the stress-deformation state in a solid plate by

means of a system of functions satisfying certain differential equations.

These relationships include the solution of the same problem according to the

Kirchhoff theory as one of their components. The boundary conditions for

these functions are determined, based on the Lagrange principle. Representing

these functions on the plate contour in series in powers of the plate thickness,

the authors obtain recurrent infinite systems of equations, from which all the

coefficients of these series are obtained consecutively. At each stage in

which the apprOXimations are compiled, we must thus solve the biharmoni_

problem, which arises in applied theory. We must also solve a certain in-

finite system of linear algebraic equations -- i.e., we must transform a

certain infinite matrix which is the same for all approximations. The elements

of this matrix depend neither on the external loading, nor on the boundary con-

tour of the plate.

In order to free P2 from stresses belonging to Pl, by employing a

similar method we may determine the stress state which disappears when one

recedes from P2 and which assumes values for P2 which equal in magnitude, and

which have the opposite sign of, the stresses along PI. The total stress state

gives the solution of this problem.

An investigation of the formulas obtained for stresses on the surface P2

indicated that the error in determining the stress os on P2 according to the

applied theory is, with respect to the plate thickness, at least one order of

_ magnitude higher than the stress itself. This conclusion is important,

i because very frequently the stress concentration coefficient at the hole is

determined by the quantity o . The situation is different with the stress
_ s

Tsz. in the exact solution, it has the first order with respect to the plate

thickness, and in applied theory it has the second order. Thus, the applied
1

A. I. Lur'ye. Prikladnaya Matematika i Mekhanika, Vol. VI, No. 2-3, 1942.

/94
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!theory distorts the Order of the quantity under consideration. Therefore,"if _
the stress concentration coefficient at F2 is not determined on the b_sis of

, but is rather determined on the basis of any complex characteristic of thes
stress state containing _ (for example, in terms of the Maxwell normal stress),sz
then in this case the use of the applied theory may entail error of the same
order with respect to the plate thickness as the quantity characterizing the
stress concentration.

k
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HINGE-SUPPORTEDANDFLEXIBLYCLAMPEDSHALLOWSPHERICALSHELLWITHA HOLE_ /'95

_:'S. P. Gavelya '_ / ,_ 7'J
(Zaporozh'ye) _ 6 7 -- _4 5 1 2_

• 7

Complication of the form of the region of the boundary value problem which

is solved approximately leads to an increase in the number of unknowns of the

approximating system of linear algebraic equations. The efficiency can be

retained by compiling the algorithm of increased convergence. A further in-

vestigation of the problem reveals that it is possible to reduce them first to

integral equations of the appropriate form. The possibility of simplifying

the corresponding differential equations is also employed.

The well known system of equations

Eh
AA¢-- _-AW = O; (1)

A_W + 120 - a_ A_ = Z,
Eh'R (2)

which describes elastic equilibrium of a shallow spherical shell entails the

introduction of the following notation, which was given in [Ref. i, page 399]:

only under the condition

w = _F; _=_F

Eh
A¢ q- _-W = 0 in Q.

(3)

Here W and } are the bending and stress functions; R and h -- radius of

curvature of the middle surface and shell thickness; E and a -- elasticity
22 22

modulus and Poisson coefficient, respectively; A =---_+---- two-dimensional

Laplace operator. _x I _x_

Let the shell under consideration in the plane of the curvilinear coordin- /96

ates Xl, x 2 of its middle surface fill the region _ (possibly a multiply

connected region), which is bounded by the profile S.

We shall employ the symbols _and_ to designate differentiation in the

tangent and normal directions, respectively, to S, and shall employ U to
T

designate the displacement of the shell points along the profile. We shall

employ the term flexible clamping to designate the fulfillment of the conditions

02_
[ = O; (4)w1,= u,l,

OW
_I, =0, (5)

which allow its points in the middle surface to be displaced only normal to

the profile.
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It follows from condition (4) that A_I = 0. Cancellation at thesEh
boundary S of the function A_ +--_--W which is harmonic in _ is expressed by
(3). Thus, under condition (4) system (i), (2) is actually reduced to a
triangular form with a decrease in the order of magnitude simultaneously:

LiLilIV+ _'W = Z; i

AO+_-IF=O X'= a_, /"

The potential representation

OW _) _ 0 (x, _) _ (_) d_S
$

(6)

(7)

(8)

reduces the problem of the shell flexible clamping (4), (5) to a system of

regular integral equations

l*(x)= ? (x)-- G (x, _)_ (E)d_S, j (9)

which represent direct generalization to the case under consideration of the

well known Lauricella-Sherman equations [(Ref. 4), page 385].

Here we have

8W

.. _ =la_/; _(x)= _(x) =X_=(x)] ._,(x)/'\c_x,I

(o)

a.,a.---;,-_ "_. ,

' )

/97

where _(x, 6) represent the fundamental solution of equation (6).

When the region _ is bounded by ellipses, it is advantageous to approxi-

mate system (9) by replacing the elements of the kernal G(x_) by trigonometric

polynomials.

For example, let us set S = SIUS2, where the profiles SI and S2 are

determined by the equations

X, = a cos t and 3x l = a cos t;

x= = a sin t and 4x= = a sin t
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(elliptical hole in a circular shell with a distance between the profiles

equal to the major axis). Let us assume symmetry of the loading Z with respect
to both coordinate axes.

In this case, the infinite system of linear algebraic equations, which is

formed from (9) by expansion of the kernel in trigonometric series, is a

quasiregular system (incidentally, this latter fact is due to the regular

nature of the system (9) and does not disappear when there is no system symme-
try).

If we set 12(1 - o2)a 4

R2h2 = 103, then 12 equations are sufficient for solving

system (9) within an accuracy of 1%. Due to the quasiregular nature of the

system, it is possible to use an iteration algorithm which reduces the system
to four equations.

In the case of the loading

we obtain

[--I 14,2888 cos t -- 11,4670 cos 3t + 1,1551 cos 5t)
78,8615sin t -I- 17,4682 sin 3t --.'0,0517 sin 5t. ;

I_cm " [0,0102 cos t + 26,7016 cos 3t + 0,0058 cos 5t_
_2,9929 sin t -- 31,8345 sin 3t -- 1,8551 sin 5t]

[where (_(i) and

respectively].

(2)
are the potential densities (8) on the profiles S1 and $2,

This leads us to the conclusion that this method may be applied to obtain

an effective solution of several other complex problems (lack of symmetry,

a more significant convergence of the profiles, and increase in the amount
holes).

The problem of the hinge-supported shallow spherical shell along its

profile S is determined by conditions (4) and

where p is the radius of curvature of the profile S.

In this case, the system of equations (i), (2) is simplified to the form

(6), (7). The potential representation

w (x) =

- (x, des

/98
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i

reduces the problem (6), (7), (4), (i0) to a system of integral equations

.[{_--I _o,(x,_) Ot_,(x._)l_x (x) = 2 _ • _,_ _, - _, (_)d_S--
$,

-2 [_ _ _---__,_ d_s+ _ _:
$,

s,
P

.°

which are similar, in a certain sense, to the so-called canonical functional

equations of V. D. Kupradze (Ref. 3). As has been shown in (Ref. 2, 3),

equations (11) may be solved effectively by the method presented above.
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HINGED CLAMPING OF A SHALLOW SPHERICAL SHELL BOUNDED BY AN ELLIPSE /99
AND RECTANGLE /

S. P. Gavely_/V. N. Kosarchin F '//) *$ ....•

(Zaporozh_ ye L'vov) 67- 1451 3
The study (Ref. i) has derived an approximate solution for the problem of

elastic equilibrium of a shallow spherical shell bounded by a rectangle and

by a curve whose parameters are defined -- for example, an ellipse. The con-

ditions of hinged clamping are satisfied in the rectilinear sections of the

profile, and these condtions are somewhat simplified in the curvilinear

section. These simplifications are removed here. The notation employed in
(Ref. i) is retained, in addition to the notation which is introduced.

The system of differential equations characterizing elastic equilibrium of

the shell under consideration may be written as follows:

where

(I-- x)Au -I-2xaO'u = -- 4___;.

AAw=120--u s) 12 l+a.,,
' Eh, F--_ " ---_o u,

,+o. ,=(*,).Z=3-'_at U= U2 , XZ t

=
;:

(1)

(2)

where Xl, x 2 are the curvilinear coordinates of an arbitrary point x of the

shell middle surface; u I = Ul(X), u 2 = u2(x), w = w(x) -- vector components of

the displacement; E and o -- Young modulus and elasticity coefficient of the

material; R and h -- radius of curvature and shell thickness, respectively;

F = F(x) -- external loading which is normal to the surface.

The conditions of hinged clamping of the profile S of the region
occupied by the shell have the form

u_ls = uzls. = 0;. (3)

w_s= (_w Jr I - • __'_ = O.e o_hs (4)

/i00

Here P = P($) is the radius of curvature of profile S at its point _ of

the plane XlOX2; the symbol ____ designates differentiation in the direction of
_n

the outer normal n = n(_) = (nl, n2) to the profile S.

It is assumed in (Ref. i) that the following boundary conditions are
satisfied
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Uhs = Uzls = O; (5)

Wls = AW_s = O. I (6)

The solution Ul, u2, w of the problem (1), (2), (5), (6) was found in

(Ref. l) in the following order: first from the problem (2), (6), the normal

bending of the shell w is expressed by the tangential components of the dis-

placement vector Ul, u2, and these are then determined from the problem (i),

(5). In view of the identical nature of the conditions for problems (2), (3)

and (2), (5), in order to solve the problem (i), (2), (3), (4) it is sufficient

to replace the solution of the preliminary problem (2), (6) given in (Ref. i)

by the solution of the problem (2), (4).

Let us set ,-,..) ( )sln--_-[_t+ 1 = ?](xl); sin mn "_, T _, + l -- % (xs);
$ $

lgatas

1o m

Wo(x) _ _:(t,_:+ m,.b,*f ix,)?_ (xl).
1. m

i 2so that F(x) = E Fgm_ (Xl)_ m (x2);
_,m

AGe Ix, [) _" go (x, [) " _ z" (1'%'Jr m%,)' ?] (xx) _sm(x,) ?l ( 0 ?rn ( _'
[,m.

_01_)= _ _ 4.,.,v,.,. , .,"(_,)?, (_.
_l (It,,, + m_O

i. m

The solution of the problem (2), (3), (4) may be represented in the follow-

ing form by means of the corresponding Green equation

w(_)= w, ix) + s! Co(_,_)_d_S..

Jf_[°_°(_._) i-_P(_)"" " _))Aw6) d_S.-- on, + aUo _x,
$.

(7)

Here we have

- _ 16,:,:_Wo=. _iw4 + m'_:__I (xO_', (x,);

Fh' " _i" O'U = Flm?: (Xl)_sm (X:_).
I. m

(8)

/i01

In the case x ÷ _, the limiting transition leads to a system of integral

equations:
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÷
-- _ 60 (x(0, _(_))_ (0 d,;

$,

(9)

where we employ the

_o (x (0) = T + _ o.e
5i

following notation :

aAw (x (0) dS = _ (0 dr,• &_(x(t))= _(t); o,,

(i0)

whre x = x(t) or x I = Xl(t) , x 2

section of the profile S2 C S.

Let us set

= x2(t) are the equations of the curvilinear

(t)= E O,'nCo_"t+ _"sin.t);
n n

I
?_ (xl (0) ?=.,(x= (t)) = -_ E (P_''" cos nt + P'a,,. sin nO;

n

•a 1 dS 1 E (T_mn COS ttt+ T_mn $iri/tO,_, (x_(0) ¢., (x, (0) _ =
n

t_(0 = _ (_,, cos nt + IJ.,sin nO;

-!=

dS 1

|--0
R

-- I 4=_=: ., '

E

fi.,. = P_,. + .,(t,=, + m',,,)• ,= Tl.,n;

E iA_= P''"'%" '
Im L a l--_ m =l

Ainl k = qal=ZFlmnelmk ,

,,,,.' (s'=;+ m'=_)';

_ . °

(FLnCOSnt + P,=ns,nnt);

Bin_ = PimnTlmk

l,='.+ ,,,,=:'

i_ _ _ lmn_ lmk . •

_,,, t =, + m====

q_ : PlmnFlm -i
,= l'==="1-rn_=: ; q" ---- .' (/'=1 + m====),;

lm

I== ; _.= _ ; q= ; q " ;

_ij BiJ _ij i Xi i _iwhere A ij, , , , p , , q , q are the matrices and columns of the

°. °. ..

elements An__ _n_ Bn_ _ij i xi i i' ' ' nk' _n' n' qn' qn' respectively.

By means of this notation, the system of integral equations (9), (i0) may

be reduced to a system of linear algebraic equations:

' I/lO.____2

94



Ap + B*_.= --q;

.%,+ _,. =q'. N (11)

where

B* = B -58-_,_ ./; • -

(,ooo..:/.OlO..

J= 0 0 1... •

The solution _, _ of system (ii) may be obtained in the following form

= O; _ + AA-*q); . ! (12)

= -- A-ZB*D-' _ -5AA-Zq) -- A-Zq, _ (13)

where D-I is the inverse matrix to D = B - _A-IB *.

We finally obtain from (7)

i

_'=:v,. , ,_ m,;=' , , pL._:).+,(P,,,,._,,+

='== ,,,(z_:+ m'4,'+ , _z'_'=,5;

4=,., '_, _.,_ _ ,
n

(14)

Writing formulas (12) and (13) in the following form

_', E ('/,_, + r,_=,,
*'J , (15)

P. E/.,t.4.#-.,,i - # _'/'! .= -- v',n_'r* -5 M.kq_

i _i
and taking into account the corresponding expressions for qn and qn' we obtain

E/ ' - ,,/ -
O _ PlmkFlm _u 71"/ _'I 4",",P:,,,¥1,,, I.

)'. = LnI, L .. , . = T "-nk /_ =-.==-- ==.st' "
m¢'a --f-m-a z .--..-_ =a real I [k/ t lm s im _ s'f" t /

/ -- =s i

t
I" =- M;,', , , , ...., , , ._'=,+m',, _,,'(_'=,+ m'=,)'l

kl =rn Lm I

The final solution of the problem (I), (5) may be obtained according to _i03

(Ref. 2), from formulas (17.2) - (20.2) given in the second portion of (Ref. i)

-- namely:

( )4,:=: _,___,.,,,,_ ¢,,.,-,,,,, ;
Ul, O. Ira'= ,_,, (t'ag + m_) =1az

• (Ru IR")• [¢.,,,,= _N_,,O,.¢._;,,. _R=t_- _ =A-*;

V =,=,vi_R:_,,%,,.
= = | tP

Nknlm _ kzal -{- 1%!
tlr$

(16)
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• 4-ma_) _kno "
_tq, im = ._s (/.a I. , s

__
R z_J., 7,, (th) w¢_;

,_'(:'d + m'_ - E kn.'
_sqlm = I I U2q, lm _ 2-_la, "_kl (al) Tam (g|)/_|q, ktt

4alas kn

2

_*m(_2)Wq,i,;
it

12(1--as) 1_. .

kn

12fl+*-)(u* q-U2q.t,,,) (q_ 1);?_, I,,,= _ l_,t., *

q_l. 2 .... #

"llk.(di) s!n _- k_'l "lt"

Just as in (Ref. 1), the convergence of the series uE Kqu shown in
q q

(Ref. 2) in the case K < i, R = _ leads to the convergence of the specific

formula (16) of the algorithm of the successive approximations in the case

under consideration K =--

sufficiently shallow.

(16)

1+<5

3 -
<< i, under the condition that the shell is
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-"LIMITING EQUILIBRIUMOFA PLATEWEAKENEDBY INTERNALSHARP-POINTEDNOTCHES_

A. P. Gres'ko _, / '

(L'vov) N 6 7 - 2 4 5 1 $
.din

Let us investigate an infinite plate weakened by a hole in the form of a

hypocycloid (astroid, hypocycloid with three branches), stretched at infinity

by the stresses p which increase monotonically and which are directed at the

angle _ to the abscissa axis (see figure).

The function mapping the exterior of the regions bounded by the given pro-

files onto the right halfplane of the region of the complex variable s = o + iT
has the following form

" [s+l I /$--I_n]z=co(s)=R _ +-_s-_3/j,!

(i)

where R =n---n---
n + 1 a; in the case n = 2 we obtain the mapping of the region

bounded by the hypocycloid with three branches, and in the case n = 3 we

obtain the mapping of the region bounded by the astroid. With this mapping,

the notch profiles cross the imaginary axis 0T of the complex plane S.

In both cases, we have profiles with cuspidal points, and the function is

m'(s) = 0 at those points of the axis 0_ which correspond to the cuspidal

points.

As is well known, in these cases we cannot employ the method of Muskheli-

shvili (Ref. 3) to determine the elastic equilibrium of the body directly.

Therefore, let us employ the method advanced by S. M. Belonosov (Ref. 2).

Let us write the boundary condition of the first main problem in terms of

Mmskheli_hvili stress functions (Ref. i);

I m

(z)+ z_'(z)+, (z)= 0. (2)

Taking into account tension of the plate at points which are infinitely

removed, we may write the functions ¢(z) and _(z) as follows:

(z) = { z + ?o (z);

(z) = - -_ ze-?f,. + q,o(z), .

(3)
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where ¢0(z), _0(z) are functions which are regular outside of the hole

profile and are bounded at infinity. Conditions (2) may now be written in the

following form, with allowance for (3):

---r--

?o (Z)+ Z_e (Z)+ _----o-_)= -- _ (z--e'_z). (4)
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After mapping of the given regions on the right halfplane Res > 0, we

obtain the following from (4) by means of expression (i):

(ix) ,
To (_ (i_)) + _ _o (= (i_)) + 'po(= (i_)) = -- § 1= (i_) --_'_) _"l.

Let us introduce the notation

¢' (s) = _o (= (s));

• *(s) , _ (1 e-_i');,v (s) = _ ?o(= (s)) + q'o(= (s)) + -- •

P 1= if.c) -- e2;=_((/_)l Jr _ (1- e=_').t, (_) + if, (_) = _-
(5)

In this case, the boundary condition (4) may be written as follows:

(i'c)-]- • (i-'-"_)= l, (.c) Jr if= ("¢). I (6)
I

The functions _(s), T(s) are regular in the right halfplane. We shall

assume that they are continuous on the imaginary axis; _(=) = T(_) = 0, since

they contain an additive constant.

According to the Harnack theorem (Ref. 3), condition (6) is equivalent

to the two following relationships:

1 ,_ !z (,) + _y) _. (7)(s)=_ s-_ -'

_. t, (_)-- ih (_)d_. (8)
(s) = _ o __---_-

Let us now write the functions _(s) and _(s) for an infinite plane with a

notch in the form of a hypocycloid with three branches. For this region,

according to formula (i) we may readily find the requisite mapping function
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(in the case n = 2)

2,,Is+, ' h-q'l
z = = (s) -_ [s-"_ + 3- _,s"_'-i] J"

(9)

If we substitute the values of fl + if2' fl - if2 determined according

to formulas (5) and (9) in expressions (7) and (8), and if we then calculate

the requisite integrals by means of the theorem of residues, as a result we

obtain the following stress functions:

"_(s) = _L_--e =/= ;

=3(s+l) L + (_+1)= "'_] 'J"

(i0)

(11)

On the basis of formulas (5), (I0), (ii), we may readily find the Muskhe-

lishvili stress functions_'(z), _'(z). By means of the well known formulas

given in (Ref. 3), we may then find the stress functions at any point on the

plate. Let us write the expression _'(z) which is requisite for further com-
putations

"_ -- _- ' l + as' _ •
(12)

The stresses in the plate will be greatest in the vicinity of the hole

points (the limiting equilibrium of the plate will be determined them).

It may be seen from the studies (Ref. 4, 5) that the coefficients of

stress concentration and stress in the vicinity of points such as cuspidal

points are determined by the following relationships in the case of two-dim-

ensional tension of a plate with a hole:

= 41 _---_
+ 0 (r-V,);

' (14)

a,p = 4F'_' {k,. ;[sin _ + sin-_] + k2. ; [cos p + 3 cos_]} 4- 0 (r-V.) ,

(i = I, 2, 3),

where kl ' i' k2, i are the coefficients of stress concentration. They depend
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on the hole configuration and the loading; _i (r8) -- the function _' (z) per-

taining to the polar coordinate system (r, B) with the origin at the point

a ail/'3 a ai_ . The orientation of the
z_/z,=a, z2=._ 2 ' zs= 2 _ ,

system may be

selected so that the polar axis ri is directed clockwise with respect to the

tangent to the curve at a given point.

= ' (r, B) may be represen-In the vicinity of the point z a, the function _i

ted as follows :

, p_ ! "-T--I. e_") O_.'--'i.).ii?_(r, Pl=-- b V_7 e ( + + ....

The coefficients KI, I and k2, I may be determined by comparing the left and right

hand sides of equation (13). They have the following form

2pf= I (15)k2., = _ sin 2_.

In the vicinty of the point zs-------_q- we have:

k,.2 vr6 _v_ + sin2= + c_ 2= ;
(16)

k2.2 =-e-_(cos 2_-- A )sin 2= , 'i

and in the vicinity of the point zs= a a/_]2 • , we have :

,k,.a= P _V_[-2_-- sin2= + cos2
• 1/6 _1/3 _ ; (17)

k2, a_----Pt/_( " _ " 1 ),-¢-_- c°s2=+_,-/-ssin2 = •

The expressions (15), (16), (17) may be written in a more compact form as fol-
lows :

kj. ,-= _ sin'.(= --w_);

k,.i'= 2p¢'_
-;---,-wsin2(=--o),.)3¢-_. (i= 1, 2, 3); (18)

2= 2,,
wl=O ; _2=-f; _s=----

On the basis of equations (14) and (18), we may readily determine the

stresses °r' °B' °r,B in the vicinity of the hypocycloid apex.

As is well known (Ref. I), the limiting equilibrium state in a plate with

sharp-pointed notches sets in when the propagation of cracks is possible in

even one of the notch apexes, under given external stresses. If it is assumed

that the initial direction of crack propagation will be along lines where the

normal stresses oB(r , B) in the vicinity of a point reach maximum intensity,
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then -- according to the results presented in (Ref. I, 4) - we obtain the fol-
lowing conditions for determining the magnitude of the limiting stresses:

, o( o_ JP-P.I

iim,.o{]/"_ap (r, _.l, P.i)} -----_K

(19)

(20)

where K is the material constant (bonding modulus) (Ref. i).

With allowance for (14), condition (19) may be reduced to the following

form (Ref. 4):

p., = + 2arcsin_/6n, q- 1-- I/_
2(9nI+ l) for kj._> 0;

= ± 2 arcsin 6n_+ l + V
' _ On_.+ ]) for k,. _< O.

(21)

In these formulas, the sign + corresponds to K2, i

ponds to _e value k2, i > 0
k2, 1

t_ i ._-
kl. l"

< 0, and the sign - corres-

(22)

For the problem under consideration, we have

r_r= ¢tg (= __ =_). P (22)

On the basis of equations (20), (14), (18)_amd (21), we obtain the follow-

ing formula for determining the critical loading P*i

z_ 4¢'ix
P*' = -W-

_.,_a sin (= -- =,) [3 sin (=-- =,-- _) -I-

The value

p, = min _P,i]

will determine the limiting equilibrium state of the plate.

(24)

In the special case when _ = _, at the point zI = a, the crack begins to

K

propagate under the loading P*I = 0.477-_ at the angle B,1 = 0. The crack

K
proceeds from the other crack apexes under large loading P*2 = P*3 = 0"735 _a

at the angles B*2 = -60°' B*3 = 60°" This means that the loading P*I will be

the limiting load for the plate.

According to the Griffith formula for a plate with a rectilinear crack

/109

i01



having the length 2_ subjected to tension at infinity by the stresses p per-
pendicular to the crack, the critical loading is

p.----0,450_. (25)
4a

3' we find thatIn our case, if we assume that the crack length is 2_ -

Let us now investigate the problem of determining the limiting equilibrium

state of a plate with a hole in the form of an astroid. Assuming that n = 3

in formula (i) for this purpose, we obtain the mapping function

[s+l , 1 /s--l/S] (27)

Z==(s)='TLs--! *-_s'-_] J'l
In the same way as above, we obtain the functions

3_[! --e 2_ 2 4 ]. i (28)• (s)=-T'i s--F7 (s+l),_'3(s+IF '

,V(s)= p= [ ,-_-3_,)1.4-_--T) 3 (s+ l)" ]' (29)

p p(_'- ')' [,2_ 4 4,,_]?' (z) 4 ms#f_--_F)L" -- l + s+ l (s-r.,-."
(30)

The coefficients of stress concentration in the vicinity of four apexes of

the astroid zI = a, z2 = ia, z3 = -a, z4 -- -ia are determined according to

formulas (13) and (30) and have the following form

°< } iIkl. i = 3"asin' (=- --=_; (i = I, 2, , 4);

ks,,= _- V'3a sin'(= --*_ (31)

X

.l =0, W, =_, ", =_, ".=--_- I

The initial directions 8,i of the crack propagation from the notch points

may be determined according to formulas (21) in the case

n, = ctg (= -- =_ (i = I, 2, 3, 4).

Finally, the formula determining the critical loading for each astroid

apex is as follows:

When a = _, we have

2 4fiK

+,,,°(=_o,_
(32)

/

p, = o,519_-_ (p, = o), (33)

In this case, we must assume a = £ in order to compare the result obtained
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with the Griffith formula.
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2
INVESTIGATION OFf THE STRESS STATE OF SPHERICAL SHELLS WITH

MIILTIPLY CONNECTED REGIONS _:

_A. N. Guz' / , -- • __

(Kiev) N 67 --24 5 15
Several articles have investigated the stress state of spherical shells

in the case of multiply connected regions. The study (Ref. 3) pointed out

methods for an approximate solution of the problems for non-shallow spherical

shells having several holes. However, no allowance was made for the in_uence of

combined stress states, which may significantly affect the result when the

holes converge. The studies (Ref. 8-10) propose the method of successive

approximations to study the stress state in_allow spherical shells in the case

of multiply connected regions. The authors comfined themselves to only the

first approximation, which made it possible to determine the distance at which

the holes had no influence upon each other.

/111

This work plans to investigate the problem of the stress state of shallow

spherical shells in the case of multiply connected regions by having the

boundary conditions exactly fulfill an infinite system of algebraic equations,

which may be written in explicit form I.

Let us investigate the stress state of a shallow spherical shell, which

occupies the (m + i) - connected region S (Figure i) bounded by the profile

L = LI + ... + L + L 0 of the circle Lk, where L 0 is the outer profile. Wem

shall connect the coordinate system (Xk, yk ) with the center of each circle

Lk; the coordinate system (x, y) is connected with the center of the circle

L 0. Under the condition that normal loading alone is present, the investigation i_

of the stress state may be reduced to solving the equation

(i)

For the boundary conditions we have

f ,' = I, 2, 3, 4; z = x q- iy; z = rein; L
i_

ILk, _- fkt (Ok) _ k _---0, 1, .... l?l;2k_---Xk-Fiyk; Zt= raetek,
(2)

where _ = w + ig_; D -- cylindrical rigidity; q -- intensity of normal loading;

all the coordinates are dimensionless, pertaining to r0, and are interrelated

by means of the relationship z = zk + £k; L_ t) -- differential operators of

the boundary conditions;

{l_U-- _') _ :/m (l--_').
R= Eh, ; x=r0v R_' "

l .........

We shall only investigate circular holes. However, by employing the results

given in (Ref. 4, ii) our discussion may be generalized to the case of non-

circular holes.
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Figure i

Wemaywrite the solution of
equation (I) in the form of the sum

_=_,qf_,+_,, (3)

where _i is the solution of the Laplace

equation; _2 -- solution of the Helm-

holtz equation; _3 -- particular solution;

m i

e_, = _ iB, In(z--l,)'_.--_,) q-_(z)-i-9-_. ImB, =% (4)
k--I

where _(z) and _(z) are functions which

are holomorphic in S and which, according

to (Ref. 13), may be represented in the

following form

(z) = _ + p,zp;'9 (z) : _ +
k-, a-t (z--lk)P D-O a-| p-I (z- !_

i

D=,O

We should point out that functions such as (5) were employed when in-

vestigating the plane problem of elasticity theory for multiply connected

regions (Ref. 6, 12).

(5)

The solution of the Helmholtz equation for the region S may be written

in the following form

_'_ _', /a_p + ib:p'_ H_t) (r,x V"_) cos pO,
@, = Z_ Z_ _a'x. + ibxp ) sin pOa +

k.,,I pnO r

+ _'o+ib;!+ _b_._I, (r,,g_) sin# •

(6)

We may represent the components of the stress and deformed states in the

form of the sum of three parts corresponding to ¢i' _2' and _3 ' In order to

determine the components of the stress and deformed state corresponding to _i

in the _th coordinate system (r , 0 ), the following relationships are obtained
m

SlreO.__iTtrw __ 1.!_2Z, _ (z) -- ," (z) __ 2i BaZ_= - --FT_,_";
gr° % (z--Ik)z_Vk.l

' (7)

T* -- -- , . "'G* -- --D 1-- "_ (z) + _," (z),
%-- T,, ,,-- _ Rez,, v" -- "

• ZF

G, =__, ,. ~1 _ 2 O1 +D_E__ Rezt_"(z)+_,'(z)
,,, o,. Q,_ -- ,.r--T ,, q",, .% .
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m

, %=-E-_, _ (z)-_--i 2

(_ . ro "_
_ ,o __,_,j t_ (z)+ _,(z)_dz + t T z_ Irn(p.+ p_).Rr_

(7)

The components of the stress and deformed states corresponding to _2 and

_3 in the coordinate system (r 0p) may be computed according to the customary

formulas for the polar coordinate system (Ref. 2). The displacements corres-

ponding to _2 satisfy the conditions of single-valued displacements. I_ these

conditions are satisfied by displacements corresponding to _3 (these conditions

are satisfied for problems regarding stress concentration, since _3 E 0), we

obtain the following from the condition of single-valued displacements, taking
into account (7):

_, + _,= OZ
(8)

ro
In (7) the term i--_ z r Im(Bo + B_) corresponds to a rigid body displacement

of the shell.

Thus, the components of the stress and deformed states may be determined

in any coordinate system (r 0 ). Using these components to calculate the

quantities contained in the boundary conditions (2), we may expand them in

Fourier series on the _thprofile. When calculating the integrals containing

the function _i' we must change to the region of the complex variable, for

they may be readily computed according to the theorem of residues. When

computing the integrals containing the function if2' we must employ the Graff

formula for cylindrical functions (Ref. i, page 394). It is first possible to

expand the function _i in Laurent series in a ring containing the _profile.

In the case of harmonics at each of the profiles, by setting the coefficients

equal to zero we obtain an infinite system of algebraic equations, in which

the number of unknowns corresponds to the number of equations.
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By way of an example, let us investigate the stress state of a spherical

shell weakened by two equal circular holes having the radius ro, whose centers

are located at the distance _r0. The shell is loaded by a uniform internal

pressure with the intensity q, and the holes are closed by lids which only

transmit the influence of the intersection force (Ref. 7). We shall assume that

the principal stress state is momentless. We shall also assume that the holes

are located at a distance for which the additional stress which is produced maybe

described by equations given by the theory of shallow shells. The solution of

this problem may be reduced to solving a homogeneous equation (i) for an

infinite region S (Figure 2) under specific conditions "at infinity" (Ref. 7)
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-Ire

Figure 2

and under the following boundary
conditions:

T,,i,,=,=--,oh,Srj =O.

Based on (4) - (6), due to the

force and geometric symmetry, we may

represent the solution in the following
form

W_

(8). We should

Let us write an

bp, c , andap, P

- ,)-,.q,,=,_(z)+,_(z); ,_(z)=_(z); ?(z)= a,, z+_ +!
[

( 'FI+ (--I) D z-- T ; _s = lap + ib.) X
p--O

× {H_')(r,,tl/_tt) cos pot + (--I)_H_ I_ (r2z l/----_) cos pOs]. !

(i0)

obtain Re _i : 0.3 from the condition of single-valued displacements

point that _i and _2 (i0) satisfy the condition "at infinity".

infinity system of algebraic equations in order to determine

d (_p = c + id ):P P P
%

On_n D_dn o-_o(A_,#o+ B_,,b_,+ On,% +A,,a,,r + B,,b.r + + + _n

+ _,,.d.)"=-- po_:(_+._); t= 1,2,3,4;n=O,1.2.... , =;
(lla)

,_ ={_n=k; {'n#k; tn= "2" n--O;
! n#O; co=O;do=O; c,=O;

o : o;c' = o;o.= o;cL = o;o_= o;D, : o;o, = o;
np n nD

° D_=O.D
; (llb)
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The following notation is also introduced:

A_ = her. x -- hei: _; A_ = n (z heir, z -- hein x); A] = (1 -- ,) her:x -_

hei,,x; A*=hei_,x 1--__ • _ + nt---ir (x hem x --hern tt);

B in= --hei_ z -- her_, _t; Btn= n Ot her_ _ -- hern z);
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BSn= --(1 -- _)hei,_ z --v her. z; B_ = her,_. -- n' _-_ (_ heir, .-

" I--_ ' l--_nS(n+ I);• --hei_); CS=2_n(n-l-l); Cn=--2 _

D_. --'2 n (n + 1) t --2n__n A- 1); _ --= _, ; D_ = _ A_p - lhero+_ lz +

.+ (-- 1)" her_ hl (ber, _ -- bei_ x) -- [hei,+ o Ix + (--1)" heir_, lx]. X

× (bei_ _ + ber_, Q; B_o = --lher_+,, lz + (--1)" herr-._ lxl ×

X (bei, x -4-bern x) -- [heio+a h -_ (--1) nheip__n h] (ber n x -- bei_,);

D_p 2 (_ + n - 1)i 1 ,.
= _ _ " (p -- l)! (n -- 2)1 " la+--"X"; Ano -- n [hero+n.lz +

A- (--1) _ herr,--,, Ix] (x bei,__ -- bei nx) + n lheiD+, lz + i

-4- (--i) n heip_, hl (_ber,,t--bernx.); B_a = nlhertt+nlx + " i

-4- (--1) _ her_._n IM (_ ber_ z -- ber_ t)--n Ihei__, h + (--l)aheip--n Aq×
_p- t), _n- z)l 1

A_r = [herp+_ Ix at- (--l) n her_n l_l l(l -- v) ber_, x -- v bei,, x] --

-- [heir+, lz 4- (--1) nheit,-.n h] [(1-7- v) bei_, :t ._- v bernzli B_t , =.
-- --[her_ lz -4- (--1)" hero-,/xl [(1-- v) heir, _ -4- v her,, xl --

-- [heio+n Ix -I-(--1) n heit_-n hl [(1 -- _) ber_,_t --, bein zi;
t

Cs_, = 2 i ---, (p 4- n-- !)! . ! . A*,,, -----[herr+, lz 4"
x s (p- 1)! (n- 2)1 la-t"n ' .

+ (--l)"her'o_,/x] bei_, _t+ n' '____! (tber,_,-- bet'.x)] 4.

+ Iheia+n + (__.)n heir., It] [ber n , -- n' _-_ (, bei:, -- bei, ,)/_

r

It

Bt,,,=lherp+nl, + (--1)" hero.__/tl [.ber,_x--.nSL_2 ×

× (t bei,_ x -- bell t)] -- {heio+n It -4- (--1) _ heir,-,, l._] [ bei_ x -4-

+n'l--"_t, ber_,--ber_,)]._. C,,a'= 2_. n(p+n--I)! . !' o_--_--_)_ _'i'_"

0 !

\1"---1 /

0"_ _ .
i

p,

/,2'

0

02

x ;

/ hole
I
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Figure 3 Figure 4
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We should point out that we may designate k(k + i)

k!

by
1

(k - 2)!

The second equation t = 2 vanishes in the system (lla and b) in the case

n = 0, and the first and second equations coincide. In the case n = i, the

first and second equations (t = i, 2) also coincide.

It is not possible to reduce the infinite system of algebraic equations

(lla and b) to canonical form (Ref. 5). Therefore, it cannot be determined

whether the system is regular. Let us proceed as follows. We shall replace

the infinite system (lla and b) in the jth approximation by the finite system

t

•Atnff)-}- "-'._.l:ithll)"t- Ctt_(/) -t- r'ittt(/) -_- -6. _,, (A t off) "1- B; b if) -I- '"n-n --n-n "-'n--n v-no D --ripp i
D--O

, (s) ' R _o(_I+ "_|); t = 1, I, 3, 4;'
--4"-.pCt ct/lp-I" D pdp ) = -- Po -E

n=O, 1, ..., 1..

(12)
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In the jth approximation, we shall show that the boundary conditions are

satisfied at the most characteristic point A (see Figure 2). Many authors

have employed a similar procedure when studying the plane problem, and the

problems of torsion and bending of rods in the case of multiply connected

regions. In view of the symmetry, the boundary conditions for S
rle I are

satisfied exactly at th_ point A, and we shall not examine the boundary con-

ditions for Qrl, since Qr I attentuates very rapidly (Ref. 8-10) and its value

is insignificant. Thus, we Shall determine whether the boundary conditions

are satisfied for Trl and Grl. In order that these quantities be dimensionless,
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T G
we shall compare rl and 6 rl (coefficients for the concentration of shear-

h h2
P0 P0

ing and the maximumbending stresses) with unity (the principal stress state).

Let us investigate a shell with the _adius R -- 200 cm; r 0 -- i0 cm; h =
= 0.2 cm; _ = 0.3 for _ = 3 and _ = 4. For one hole, we have

IA = 5,296;

In the plate TO = 2.000.

h
A

PO

Ot

6 _ IA -- 1,407. (13)

i. _ -- 3. If we do not take into account the reciprocal effect, then we
have

T r G r "

(14)

i.e., the maximum error in satisfying the boundary conditions is 59%. The

results derived from solving the system (12) in the case j = 5 are given in
the table. The maximum error for the stresses is 0.5% and for

G
6 r - 4%.

P0

2. _ = 4. In this case, it is sufficient to take j = 0 in (12) in order

to find the solution with the same accuracy as in the preceding case. The

results derived from the calculation for the points A, B, C and D (see Figure

2) are given in the table. The values of the corresponding coefficients for

the plate are given in the denominator (Ref. 14). As may be seen from the

I in a shell in the case of two holes for _ = 3 istable, kma x A

k2max IA Tg G0

in the case of one hole klmax I = 5.296 + 1.407 = 6.703; In the plate,
A

I I = 2.00. Figures 3-6 show the distributionk2max A = 2.89 and klmax A

1 1 6 6

---hTr'p0 ---hTe'p0 p0h-_Gr and p_G e over the line connecting the hole centers.

The following conclusions may be drawn from these figures and the table:
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l T

3

A

4

3
B

4

---7-
C

4

3

D

4

--0,005

0,00

0,000
0.00

4,445
2. 89

5£_0
2,41

0,56'} 3,247

0,923 2.298

0.853 2,496

i ,079 1,040

0,938 2.246
0,46 2.16

1,105
0,62

0,709
1,53

--0.040 1,528

--0,040 i ,416

-- 1.832 0.772

--1,815 --0,568

--2,613 0,331

--!.456 ---0.75,3

--2.829 O,!90

--I,151 --0,265

i. The method presented makes it possible to study the stress distri-

bution when the holes converge by controlling the accuracy with which the
boundary conditions are satisfied.

2. When the holes converge (the case £ _ 3 which is investigated) there

is a decrease in the stress concentration in the shell along the center lines,

and T 0 decreases substantially. At the same time, there is an increase in the

stress concentration in the plate _e aremaking a comparision with one hole
here).
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We should point out that the results obtained pertain to the case of non-
reinforced holes.
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J STRESS STATE OF A_SPHERICAL SHELL WEAKENED BY TWO CURVILINEAR HOLES

.... A. N. Guz _ _. I. Shnerenko , _ 67-24 51
-_pherical

The studies (Ref. 7-9) investigated the stress state in a /shell weakened

by two circular holes. This problem was solved by the Schwarz method (Ref.

4). This article employs an approximate method for determining the stress

state in a spherical shell weakened by two curvilinear holes.

Let us examine the equilibrium of a spherical shell weakened by two curvi-

linear holes. The stress state of this shell consists of the principal stress

state and an additional stress state produced due to the holes (Ref. 8). We

shall assume that the holes have such dimensions and are located at such a

distance that the additional stress state may be described by the equations

given by the theory of shallow shells (Ref. 2). The principal stress state de-

scribes the stress state in a non-weakened shell. The problem of determining

the additional stress state may be reduced to integrating the equation

V:V_-- i_V'_ = 0 (i)

under specific boundary conditions on the hole profiles and under conditions

"at infinity" (Ref. 8).

Here we have

where r0 is the parameter characterizing the absolute dimensions of the hole;

R, h, E are the radius, thickness, and shell elasticity modulus, respectively.

The hole profiles are formed in such a way that the function

z. = _. + _.[. (_.) (z. = r.e'°., _. = p.e'L e < l) : (2)

performs the conformal mapping of an infinite plane with a circular hole having

unit raidus onto an infinite plane with a given hole. Here rk are the

dimensionless coordinates with respect to r (see the figure).
O

We shall try to find the solution of the boundary value problem in the

following form

/120

/121

4

j--O

+$, " e,)+/ ,_.(_)+_j2 (rz, 0_)1 _ • I_jl2 (r_,
i=-O ,

.v,,(k )
+ _I_,(rs, 02)1.

(3)
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Here _jl(rl, 81) and 9.32(r2, 8(_))
curvilinear hole (Ref. 3). _j12 (rl' 81) represents the deviation
of the profile of the first hole from the function _(k-l)j21(r2' 82)"
e2) represents the deviation of the secondhole profile from

the function _j12_(k-1)(rl, 81).

are the solutions, respectively, for each

_(k)
j 21 (r2'

Thus, the Schwazz method is employed, but in each successive approxima-
tion the functions are represented in the form of a series with respect to
the parameter characterizing the deviation of the hole form from a circular
form (Ref. 5).

The solution of equation (i) which satisfies the conditions at infinity
(Ref. 6), has the following form

(r, O) = iC In r q- (Co q- iDo) H_o') (_/-----[_r) q-

_- _ [(A. + iB.)r-" + (C. + iD.)H") (J/-----Txr)lcosnO,
a..l

(4)

where C, Cn Dn, An, B are the constants; H(1)(_-_<r) = her <r + i hei <r --' n n n n

the Hankel functions of the first kind of the tn__horder (Ref. i). The

constants for all of the functions may be determined according to the method

given in (Ref. ii) from the boundary conditions, which have the following

form in the case of free profiles on each hole:

"s.,I,o*o; (5)

where F(y, e) is given in (Ref. 3).

With such a formulation, we may solve the problem for a wide class of

hole forms by the appropriate selection of the mapping function f(_).

Let us examine a shell weakened by a circular and an elliptical hole,

which is loaded by internal pressure. 0nly the intersection forces are in

operation on the hole profiles.

In this case f(_) = _l a + b a - b
; r =--; _=o 2 a + b ' where a, b are the

ellipse semiaxes.

Taking the fact into consideration that an elliptical hole differs very

little from a circular hole, in (3) we may confine ourselves to only terms

with e in the first power, i.e., we may confine ourselves to the first approxi-

mation. Thus, the solution (3) will have the following form

¢ = _oL(r,, %) + _o2(r=, %) + eq,,, (r,, %) + !

k_-t (k) _(k) ._{k) _(k)4- l¢o,, (r,, 0,) q- -o2, (r_, 0,) Jr, (q'n, (rt, 0,) + _,,, (r,, O,))].'i

(6)
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The functions contained in (6) may be written as follows

(l)oi (ri, 00 = (C _°n -]- iD _°l)) Ho (V'_-TxrO;

q)o= (r=, ol) = (C_°ll + iD _°l)) Ho (_-----Txr=); " ' i

• ,, (r,, 0,)= (c_TM + iD_TM) H, (IP-------],r,) cos20,+
-_- (A(lli) + iB_.]'))'r_ ' cos 20,;

..._k)_. 0i) iC_/]i) ---(#1=) ;n(#l,)_ .-;,w/is vi. In r_ + _ + ._-_ # -i-- l[/tKn _l-
nml o

ff, tS'm iDa2))_-,_n + Hn O/_-'_xr,)] cos nOl_

(I)_k)
#2, (r,, 02) = iC_ 21)in r, Jr _. I(A(_J_') " .,_Um), _n"t-lDx. )r s +

n--I

/(_(/21 ) .. v-_ff21 )_
Jr _.. -t- lux. / H. (V_-_xr=)] cos n0=. i

(7a)

(7b)

(7c)

(7d)

(7e)

The function _01(rl, 01) characterizing the stress state around one

circular hole was obtained in (Ref. 12); _02(r2, 02) and _12(r2, 02) for

elliptical hole were given in (Ref. i0).

one

If we confine ourselves to the reciprocal influence of holes in the first

approximation (k = 1), the functions _(i_ and _n(ll)coincide, respectively, with

the functions _(I) and _(i) (Ref. 8)
uJ._ UL.J_

12 21 "

Thus, in the first approximation the problem may be reduced to determining

the functions _(1)2(r I, 01 ) and _(I)121(r2,02) . The arbitrary constants included

in the functions _](i_ and _(i)may be determined from the following system of

Ill

equations

(_'l_1 • _11.1Lrio _! . a' Ira._-u=I_"iJr @,=) 1,:.= O;

0' 1 Im i_") _,=) [,: O;• - _',,=+ = (8)

--[(I- ,)_ $ vVl]Re (_ + ¢)a)1,:= O; (8a)

0 S 1 f--v 0= ! ) (I)• -- _ V + r--_" Or=_--"]"_ Re (@v, -t- ¢1=)[,; = O;

( @ [ '( @1 O i O' Im_,=,l,,=, L_' 1 O ! a'

-- s _ • _ Im (@o, "I-=o=:, le,-z

.... ,) [ O_J_' 1, _, ! Im@l,,l,,= I=_ --L_"Or,o_._+ "0r=00= rs 1o,-i

' l L(')[2 °_ )] _(')I,.-1 ;

(8b)

(8c)

(9a)
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(i)•' Os i Re (Oos -I- 002.)],.-s ;+ (I -- ,) L_'_o-;-_" ,'7 . le.-T

( ) "_ ' _"',l-- gO Vs + --'_t"1--" _m " _! Re¢h'll"" = L_m_Re(¢"' +_m"l'=i';le,-i Is.-_

(9b)

(9c)

The stress T on the profile r may be written in the following form

• /-i

+.E...,,, L' + "
o i"O 0 z

l # I _ - (/--m)
+ z.,_"-"'_, _+7, _: + c, x

""' -- • ®o, +x _/2 + ,_j,=+ _Ij +
kml . _

e w

+ _,'o *' o,-_+ ' _r__.+,: _-_. +
+L;'' _' -'l _o,1..-,, • :

' r, J IO,. v

(i0)

The operators L_ j), L_ j), L_ j), L_ j) are given in (Ref. 11).

Let us investigate the influence of an elliptical hole upon the stress

state around a circular hole. In order to do this, in (6) it is sufficient

to confine ourselves to the following terms

_(I) . _.,.(I)
= _ez + (])09+ z_z, + --o__- zws" (ii)

With the exception of _(I) all of the functions included in (ii) were
112'

determined in (Ref. 8, i0, 12)• The constants were determined from the system

(8a) - (8c). In the case when R = 200 cm, £ = 3, rI = r = i00 cm, _ = 0.3,o

h = 0.2, the stress value on the profile of a circular hole at the point

01 = 0 (see the figure) has the following form

The second term in (12) characterizes the influence of ellipticity of the

second hole on the stress state on the profile of a circular hole.

T, r
The table presents the coefficient of the stress concentration K = e=0

pR

for different values of the ellipse semiaxes. The lower line gives the 2

error 6 (in percents), which is assumed if we calculate the influence of an

elliptical hole as the influence of a circular hole with the radius r =

a+b o

2
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FORMULATIONOFSTATICBOUNDARYVALUEPROBLEMSFORSHALLOW /125

SHELLS FOR MULTIPLY CONNECTED REGION$_

V. I. Gulyayev_ A. L. Sinyavskiy ,:r"',:,": ._ - . -.,
( iev) N67-24517

This article investigates a multiply connected shell referred-to an

arbitrary orthogonal coordinate system _, B. The equations of statics for

shallow shells given by V. Z. Vlasov (Ref. 2), which may be written in terms of
the functions F and w, have the following form

(1)
A_ q-_DAAw-- Z = 0. (2)

Here we have

,r.:,,A = _ L_ _'_" "

_ , _/j.

_F
The stress function F and its normal derivative _n are not given

_F
directly on the shell profile, and only the stresses related to F and _n by

the following differential relationships are known:

)aF aF
N,=_.._ _-._f +_._;._;;

I a(l aF) 1 aA aFN,='X" _ _--_ +_z" _. _-;

s=--_ --_"_" a_'--_'" _'_ •

(3)

(4)

(5)

Due to this fact, for a multiply connected region the boundary conditions /126
_F

with respect to F and _n include additional unknown values.

The studies (Ref. 3 and 4) investigated the problem of determining them

for the case when the shell profile coincides with a coordinate line in a

Cartesian or polar coordinate system.

Let us investigate the more general problem of formulating the boundary

conditions for F and 8F on the profile, which represents the coordinate line

8n

= _0 in a certain arbitrary orthogonal system of coordinates _, B. Another

i
This work was performed in the Laboratory of Thin-Walled Three-Dimensional

Objects of the Kiev Engineering Construction Institute, under the supervision

of Professor D. V. Vaynberg.
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method of deriving some of the results given in (Ref. 3-4) will be obtained

as a special case.

Let us set the following condition on the. profile _ -- _0

s = _, @)j"
B

(6)

We shall employ the following notation

F..,, = f, (P)|
OF • _•

..,,. = f' (P)/
(7)

We find from relationships (3) and (4) that the functions fl and f2 must

satisfy the following system of ordinary differential equations:

I a(, at,_ , a8

1{of, ! OB a;, ! _.f,/=,h- A"3_,_ --_'" a'T"_--T"

(8)

(9)

or

of, .t oA
of, o_ A _ f' +AB'_'

"i
"" B O_

I f]

The general integral for the system of equations (i0), (Ii) has the

following form

f,= f2(0_+ C,f,m + C,f,(,); !
f, = f, co)+ C,f, m + C,f, c,,_+ C,,

(10)

(ll)

(12)

(13)

where f2(0), fz(1) and f2(2) are determined from equation (Ii), and

& _o_= _ _--_- -- _'" o-Tf' co_+ A _, '9;
_"_m'm , "

_F
Thus, the problem of determining the boundary values F and _ on the

profile a = a 0 may be reduced to determining the general integral of the

differential equation (11).

(14)

(15)

(16)
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If _ = x, 8 = y are rectangular Cartesian coordinates, we obtain the
following on the profile x = x0

F = f,= _,(o)+ C_ + C,|

aF I_-_-----f2----fs(o) q- Cs (17)

We have the following in polar coordinates _ = r, 8 = 0 on the profile

r = r0:

F = f, = f, co)+ C, cos 0 + Ca sin 0 + C,_

OF J " (18)o-_= f'= Is(o)+ C,

In bipolar coordinates, equation (Ii) acquires the following form:

_'fs 3 sin _ 8f2 ".2_2 cos p -- eh "o _ 0.
ap ch =o + cos _ " a-'_- ch =o+ cos _ ee =

(19)

In this case, we employed numerical integration. Thus, three unknown

constants, which correspond to three powers of static indeterminancy (Ref. i),

are included in the composition of the boundary conditions for the system (i0),

(ii) in the case of a doubly connected region.

We shall assume that the quantities CI, C2, C 3 are generalized forces.

It follows from the condition of single-valued displacement of the shell that

the generalized displacements corresponding to them equal zero.

Employing the Castigliano theorem, according to which the partial deri _

vati_e of the potential energy with respect to one of the generalized forces

equals the corresponding generalized displacement, we may write this condition
as follows:

OV aV aV (.20)
_=o, a_,=o, _,=o,

where

V= 2 j j \eh +-E-_-- -E-_ _-

-- Dx_ -- 2,D,,x, + D (i -- ,) _')AB d_ d_.

%

We thus obtain the following system of linear equations

(21)

_.c, + _,=c,+ _,,c,+ _,p= i!}
_,,C,+ _32c,+ _88C,+ _,o= i

(22)

In order to determine 6ik(i = i, 2, 3,; R = i, 2, 3, p) we must express

the potential energy V explicitly in the form of the quadratic form of

120
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CI, C2 , C 3-

Let us introduce the following shell states into the examination:

state C, :C, = I, C, = C, = p = O;

state C_:C2=I, C,=Ca=p=O;

state C_,:C,=I, -C,=C,=p=O;

state p :C,= C,= C, = O_ P = Po.

The set of external forces acting upon the shell is designated symbolically

by p. The boundary condtions are completely determined in each of the states

investigated. We shall designate the quantities pertaining to each state by

the superscripts in parenthesis. In view of the superposition principle, we
have

Jr,= _?, + N_"C,+ N?'C,+ JV_"C,_
(1) "_,= N;"'+ N,C,+.N_')C,+ N_,')C,;

S = S(")+ S(')C,+ S(')C,+ So)C,;

,,,= ,,?+ ¢'c, +,,',"c,+ ,4"c,;
a)r ._')r *_')C,;

= _(")+ x(*)C,+ _(mC2+ ,(')C,..

(23)

The derivatives

following form

of the stresses and deformations with respect to C. have the
l

oc-St _

o,,1 ,,?, _,,_ 40, _, =,,,L
.oc--_ _ -

(24)

Substituting (23) in (21) and taking (24) into account, we obtain

{ I (0 (k) M(OM(k) . Ar(t)Ar(_) ,,(k)t)(O_._ = _--&IN, N, +"s ", --'*'a "s --'a'l *vs +

• $ 2 (I + *) S(")S0')] -- D [,(O)dk) + xU)_d*) + ,_t(Ox(_) +
• 1 ! B t I |

+ _,ZO)x!,')4- (1 -- ',) x(')'d*)l} ,4B da d[J, ,.
1 lJ .--

i= 1, 2, 3; k= 1, 2, 3, p.

(25)

In the case of rectangular Cartesian coordinates, we may transform the

double integral (25) into a contour integral according to the Green formula:

(26)
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t

--_ _" o: o_ ._/jdx+ -_" _fc -- T_ " a-_--

-- w' __ t _P } -- "__ "o-_g T_ "_T_ du + (26)

In each of the smooth sections of profile, we may employ integration by

parts for several terms in formula (26). Then (26) acquires the following
form

(27)

The sum is extended to the corner points of the profile here.
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CRITICALLOADFORREGIONSWEAKENEDBYHOLESWITHCRACKS_:

A. A. Kaminskiy _ _ .)

(Kiev) N 6 7 --24 5 18
A

This article investigates the problem of determining the critical load

for a thin, infinite plate weakened by an arbitrary elliptical hole with two

equal macroscopic equilibrium cracks having the length _, in the case of

uniaxial tension of the plate (Figure i).

/130

The profile L of the hole with cracks is free from external loads. It is

assumed that the plate material will be elastic up to fracture.

The boundary conditions (Ref. 5) for the stress functions _(_), _(_) have

the following form in the case under consideration

(o)+ _ _ _ap+ _ = o;

,, 0) ,
? (°)+ _ _ (o)+ _ (o)= 0.

(1)

(2)

Here _(o) is the boundary value of the function

• +m) i L,t_+ I '_(_)= R L(! (_+T)+ (l--m) T)--I"_ 7 ' (3)

where m =--
a-b

a+b ; i < L < _; R -- real parameter.

The function m(_), (3), conformally maps the exterior of the

ellipse with semiaxes a, b and with two cuts (cracks) along the transverse

axis in the z-plane (Figure i) onto the exterior of the unit circle in the

plane. We shall investigate one of the holomorphic branches m(_) for which

the second component in (3) has a positive value for _ = i.

The mapping function _(_) (3) is an irrational function and has singular-

ities on the unit circle y which correspond to the angular points of the profile

L. Therefore, just as in (Ref. 3, 7) we shall approximate the function w(_) /131

(3) by the function

N

nm|
(4)

so that the coefficients c satisfy the condition
n

_N (_) = R1 (l --_-') _ (_), (5)

where QN is a polynomial all of whose roots lie within the unit circle RI, c' n

are the real parameters.
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Figure i

Due to this approximation, the cuspoidal points at the crack ends are

retained on the new profile L'. Only the unstressed convex corners are curved

at the points where the crack edges intersect the hole profile I.

The stress functions which correspond to mN(_) will be designated by

_N(_), _N(_). Since the singularity of the solution, which arises due to the

corner cuspidal points, can be completely obtained from the function _N(_ )

(Ref. 2) (_N (_) has a pole of the first order at the points _ = +_ i) and does

not influence the other stress function _N(_ ) , we shall obtain the function

_N(_) in the following form (Ref. 3)

N

where _n are the real coefficients; P0 -- intensity of the tensile stresses.

The boundary condition (2) for the functions _N(_), _N(_ ) may be re-

written in the following form

" (+1 C÷)_ (a) _ (a) = -- _N (o)_ -- w_ _N (a). (7)

Comparing the coefficients in the expansion of the right and left sides of (7)

for identical powers of o, we find that the coefficients c_ must satisfy the
n

following system of algebraic equations (Ref. 3):

N--p N--D

.,+ +2,:,,+.+,+(,_ ++,,)÷ c+>
+,..,I

1
The function mN(_) maps the exterior of a certain new profile L' onto I_1>1.

/13__2
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n-,l

"FT= p>l;
'_, p=l.

(p= 1, 2,.3.... , N).
(8)

1 1

Multiplying both parts of (7) by _ . o -

obtain

and integrating over y, we

• (+){÷)mH&) _, &) = -- a,_, (:) _,1 -- o,N _M (_). (9)

'(_), CN(_),Just as in (Ref. 3), in the case N + _ the functions _N(_), _N

CN(_ ) ', _N(_)_N(_) for real _ outside of y strive to m(_), m'(_), ¢(_), ¢'(_), _[_)

_(_). Therefore, passing to the limit in the case N ÷ = in the right and left

sides of (9), we obtain the following for real z in the crack extensions

;qS (¢). (i0)

The stress components may be determined from the following relationships

(Ref. 5)

X,, + Yu ----4 Re {,I, (r.)'};

Yu-- X_ + 2iX u - - [_-_}- {_}+ V .

(ii)

(12)

In the case of uniaxial tension of the plate along the y-axis, the criti-

cal stresses for each of the cracks will be the same. Therefore, we may per-

form all the subsequent calculations for a crack which lies along the positive

portion of the x axis. We may find the stress distribution Y (x, 0) around
Y

the end of the crack under consideration from formulas (i0) - (12):

' a+l l--(i+lop
-- I

Y,(x, o}ffi - #/1 | _ i

(13)

where

_'(0

I + lo = _ i(a + 1) + ]/'(a + 1)' -- (a' -- b'}l,

/133

where s is a small distance along the x axis from the point under consideration

to the crack end (see Figure i).

The tensile stresses will be critical, if the condition of G.I. Barenblatt
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is satisfied (Ref. i)

- K, i
Y.(x, o) (14)

where K1 is the cohesion modulus.

Substituting (13) in (14), we obtain the expression for determining the
critical stress:

ms

K, 2 1 -- (1 + top
1 (15)

_, Since _N(1) is close to _'(i) for large N, -- replacing _'(i) in (15) by

N (i) -- we obtain the approximate expression for determining the critical
load I

Pcr'--K, 2 l "
I--0+- (16)

Determining the coefficients an from (8) and calculating the quantity (i)

from (16) we find thefor different values of the parameters m and % = _ ,

critical load which is necessary for the initial development of cracks. The

calculations were performed on a BESM-2M computer for 1 _ m _ -i. Up to 34

terms of the mapping function (4) were thus taken into account. Figure 2

_Pcr /--_ on _ = _ for
presents curves showing the dependence of Pcr = K I

different ellipses. The form of the ellipse was changed by changing the para-
meter m.

In the case m = i (the insulated rectilinear crack) _' (i) = i, and from

(15) we obtain the well known formula for determining the critical load (Ref.
1)

r-----_ Y a--_" " (17)

i
For ommidirectional tension of a plate, the critical load may also be deter-

mined from expression (16). However. the coefficients _ may be determined
n

from another system of equations given in (Ref. 3).
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Whenm = -i, the ellipse changes into a vertical slit I, and we obtain
the formula Pcr for a cross-shaped crack from (16):

K,
P = VY" (18)

/134

If we set # N(1) = i, then formula (18) coincides with the well known

formula for an insulated crack (Ref. i). Actually, it may be seen from the

graphs given in Figure 2 that the critical loads of an isolated and cross-

shaped crack differ to an insignificant extent. Consequently, a vertical slit

has a slight influence upon the development of a horizontal crack.

V i
I
/

_ _'q, _ / / o.,

2 i'

Figure 2

_w N =In the limiting case, for £ ÷ 0 the values (i) for different 0 _ m >

1 are given in Tables 1 and 2, respectively, for omnidirectional and uni-

axial plate tension. It may be seen from Tables 1 and 2 that an increase in

the mapping function terms has only a slight influence upon _'N(1).

As follows from the statements given above, /135

1

It is assumed that the edges of the vertical slit do not osculate.
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TABLEi

¢tl

N

0 0, l 0.2 0.3 0,4 0.5 0,6

24 1,0000 1,0997 I.I 992 1,2983 1,3965 1,4928 1,5845

34 l,O000 1,0999 1,1996 1,2992 1,3984 1,496_ ],5931

• .. .

TABLE 2

m

N

0 0, I 0,2 0,3 0,4 0,5 0,6

24 !,4990 1,5485 1,5977 1,6463 1,6938 1,7392 1,7793

34 1,4995 1,5493 1,5989 1,6483 1,6972 1,7452 1,7908

Pcr_ I_N (1)]"
! I

where Pcr'* [_ (i)]* are the values of these quantities in the case of omni-

directional tension, and ** _'Pcr' [_N (I)]** are the values of the same quantities

in the case of uniaxial tension. Computing [_(i)]* according to Tables 1

_v

[_N(1)]**

and 2, we find that this quantity is close to k* , where k* and k** are the

k**

stress concentration coefficients in the elliptical hole apex under consider-

ation without cracks for omnidirectional and uniaxial plate tension, respect-

* k*
ively. Thus, Pc___r_ k-_ . This points to the fact that the local stress field

Pcr

around the hole greatly influences the development of small cracks. With

,
an increase in the cracks, Pc___r+ I, which indicates that the hole has a

Pcr

smaller influence upon the development of comparatively large cracks.

_ In the case m = 0 (circular hole), the curve giving the dependence of

Pcr on _ (see Figure 2) is very similar to an analogous curve obtained in
R

(Ref. 7) by the energy method of Griffith.
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i Ai
7 TEMPERATURE STRESSES IN THIN PLATES WITH REINFORCED EDGES

Yu. M. Kolyano' " $- -

(L'vov)

Heat exchange condition on the e_e of thin plates rei r_e_ y zn

rod. Let the edge of a thin plate having the thickness 26 be reinforced by a

ring made of another material having the same thickness and width 26k (Figure

i). Let us a_sume that the heat exchange between the system, which has the
temperature t at the initial moment of time m, and the surrounding medium

takes place in accordance with the Newton law, and let us also assume that

there is an ideal thermal contact between the ring and the plate. We then have

the following equation (Ref. i) to determine the temperature field:

/137

For a plate

For a ring

c
At -- x'(t --&) = -_. _ ;

At, II % _K
--** (t, -- t<)= -_. _--;

The boundary conditions

1.O/ Ot_ Ol.
On ---- k,_-, t -- t.on L; k._- ffi a¢(tg--tJ on /.,,

_=--ac(t--tc) on/_;

(I)

(2)

(3)

The initial condition

t:tx.,Pfor _mO, -. (4)

2 a 2 ak

where A is the Laplace operator; K = l-_ ; <k = lk 6 ; X, Xk thermal con-

ductivity of the plate and the ring; c, ck -- their specific heats;

_, ek -- heat transfer coefficients from the lateral surfaces z = ! 6 of

the plate and the ring, respectively; ac' _' -- heat transfer coefficients
c

with L and L' •
c c' t, tk, tc -- temperature of the plate, ring, and medium;

n' -- normal to L
c

Assuming that the ring width 26k is of the same order of magnitude as

the thickness 26, we shall regard it as a thin rod. Let us formulate the

condition which the plate temperature must satisfy on the reinforced edge.

We shall assume that the rod axis coincides with the plate profile. For this

purpose, we shall relate the rod to the coordinates (s, n) and, writing (2)

in these coordinates, we shall disregard the quantities kn (k -- curvature of

the profile Lk) as compared with unity. As a result we obtain

_K --_t_, (5)

/138
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where

__ s cx 0 " I
II an element of the arc Lk. Let us intro-[

"_ duce the integral characteristics;

8K 8x

r,,= _[_ [ t_dn; T,{= ___ [ n& dn. i

_ in

Averaging (5) accordance with
(6), we have

I '! _,c + " _"-- =--z,Tc;

If

p,r:+_ _- +_ _:
where

ix

Figure i

= --,_T:,

s. r

Tc = _ tcdn; T: = 3 ntcdn, r

wher$ the indices + and - indicate the values of the functions in the case

n =- 6k' respectively.

Let us determine Tk and T_ in terms of the boundary values of the

temperature tk in the case n = + 6k. For this purpose, we shall write the

solution of equation (5) in the following form:

i[cosp.,t+ si.p.(t+ _ iT)]+
n

4- p tlj,' sin p (no -- n) &dno +

SX

sin p (_K-- n) £ . ]
q- _ - _ smp (no -4-_x)tcdnoj.

--_x

Substituting (8) in (6), we obtain

8x

T,, = tg P_K(,+_ +t=)-l-_(2_l_sp_.Icospntcdn--T:);_,,,

3 (l p_ ctgp_)(t.+ --tD +
T:=2-_

8t

Instead of Tk

we take condition (3)

(6)

and Tk , if we substitute their values (9) in (8) and if

i

(7)

(8)

(9)

into account, we eliminate t_ from the system of equations
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obtained. Then, setting

in the equation obtained we pass to the limit for _k ÷ 0, thus retaining %*
Ck' _k, rk as constants. As a result, we obtain the following condition _f

heat exchange on the edge of a plate Lk which is reinforced by a thin rod;

which is characterized by four thermophysical parameters of the rod; heat_resis-
tance r_ , thermal conductivity _, specific heat C_, and heat transfer ak "
It may readily be seen that the Newtonheat exchange condition for an unreinfor-
ced plate follows from (i0) for zero values of all four thermal physical para-
meters of the rod. /140

1
Setting r c = _

c

- 0 in (i0), we obtain the following condition

_a t--re
• t ir, (ii)

which coincides with the Newton condition for an unreinforced plate, in which

the thermal resistance of the rod r_ plays the role of the heat exchange resis-
rc

tance/on the plate surface. In the case r_ = 0 we obtain the well-known condi-
tion of the first type from (ii).

Temperature field and temperature stresses in an infinite plate with a

circular reinforced edge. Let us determine the temperature field and the

temperature stresses in an infinite plate which is free from external load and

which has a circular reinforced edge. Assuming that the average temperature is

only a function of time, we shall have the following, instead of (i) and (i0):

_t ! •
_÷7" _- --Bi (t--to) = _Fo--;

-- Bio (t--tc) = I _ for • = R,
where

• t •

a, ,.,. I + r¢,x. ,,¢t
Bi= ; Fo=_-; Bi o=mlc!+r;,a-----_, Bic "i';

= o.,:(,0+0 TI'.

where _, _k represent the thermal conductivity of the plate and the rod;
2_

r 0

* =R_ thermal resistance of the plate; r = ; ro--polar radius;rp -_ _-

R -------
6 ; Ro--hole radius.

(12)

(13)

If tit =0 = O, then--assuming, for example_ that the medium temperature

is a harmonic function of time, i.e.,

te -----to_®_, w = ¢onst, ! (114)

employing the Laplace transformation, from (12) - (14), we obtain the non_
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statiomry temperature field of the plate in the following

I = toe-M'qo (r, Fo, _) + t_ {1 + i_ [Eo _, _) --
-- E, (r, Fo, _)11,

where

form

l(r,
•q'-[- io_+ Bi ;

0 0

f (r, _q)= Jn (r_ [_Y, (R_) -_- BYo(R_q)]-- rn (r_) ['qJ, (R'q)4- BJo(R'q)]
_"+' ilia (R_) + BJ o (R_) l' + i_Y, (R_) + BY b (R_)P) '

A = Bi ° - T Bi; B = A - y_2; Mi--Mikheyev condition; Jn (n), Yn

functions of the I and II type of the real argument; n = 0.i.

of (15)

where

For an asymptotic thermal regime (Ref. 2), we have the

where K is the
n

the

S

Macdonald

tc

t= = T [SK° (r ]f( ) -I- Bi],

Aiw -

V_K,(RV[)+(Bio+i_)Ko(RVD ; _ = Bi + lw;

function n = 0.i.

If t = t cos _ Fo, we may find the temperature field
C O

real part of expressions (15), (16), respectively, in the

t = t_ + tom o(r, Fo, _);

t,o f. '
,+b s

-- (sin to Fo) (h,l, -- hslOl. + Bi (Bi cos to Fo + to sin to Fo)],
J

where

(15)

/141

(n), --Besse$

following instead

(16)

by determining

following form

(17)

(18)

M 2A _ t(,,_) " (Bi + n')sin_Fo--
" ------_"J.(Bi-_-,_)'nu_ [el cOS_ FO --

0

-- ¢o' e-_-'_'v°] d-q, n = O; 1, = BiU o + toV o, 1, = BiV e -- o_/o;

= 2 V, + 2 U, + _F_, --

• *

--B,oUo, HI'*(irJ/_)= U. + iV.,n = 0,I;U. ----U._,.m

v" = /14__2

We should note that we have the following formula in the case of therm-

ally insulated surfaces of the plate (_ = 0) and the rod _k = O)z = T_
instead of (18):
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t_= =_T'/'_,_2t°Bi*°{dt |cos _ Fo kero (r lf'_) -- sin to Fo keio (r 1/_)1 +:
d,j + d2

+ d2 [cos _oFo keio (r ]/_) + sin oJFo kero (r _)]},

(19)
where

Setting m = 0 in

tivity problem.

d, = Bi_ kero (R V'_) -_- ¢o-f keio (R _) __

_ [kerr (R 1/_) + kei, (R V'_)];

d, = Bi: keio (R 1/'_) + m_ kero (R V_) --

F'; [keil (R V'_)- kerl (R V _)].;

n = 0,1; Bi o": _.Blctc
'c+,:

(15) we may obtain the solution of the thermal conduc-

t = to [1 .+ e-M'Qo (r, Fo,_)l,

which corresponds to the case when the average temperature is
function of time.

(20)

the Heavyside H

In order to determine the stress-deformed state caused by temperature

fields (15) -- (20) in the plate, we may employ the condition of simultaneous

deformation of the rod and plate.

U= or+ tx Rf°r •:R (21)

and the expressions which are known from (Ref. 4) for stresses and displacements

in a plate

or : E 'I--, r'(l.+_

• (22)" "'S ]4 + rtdr-- ad ;r'(| +,) _
R

"' Iu=clr+-_+.T(l+v) _dr,

where m = Ro

2_--_; _, E-- Young's modulus of the rod and plate; a(k)t, a t -- their

temperature coefficients of linear expansion; v--Poisson coefficient of the

plate. By determining the integration constants Cl, c2, from condition (21) /143

and from the condition that there is no stress at infinity, in the case of the

temperature field (16) we have the following expressions for temperature

stresses in the plate;

i (23)
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where

where

-- ---_--j, Or (23)

O = 1 , r, = r 1/'_, R, = R l/r..
_+k__.
Ex

In the case of the temperature field (20) we shall have

a(k,,,[R_ " [(RI' Q' (R°r= 0 [,_,t:--, ,,,_...;-j+ ,_,Et_'," 'eP°'
-- R s -- r']

Q, (_, •F°' ,q)+ --'_- J ' +s = -- +_+ ate (t_ -- t),

(24)

t.*= to(t- r_).
Expressing the stress (24) in Cartesian coordinates and transposing the

coordinate origin to the point (xI = R, Yl = 0_, we may strive to the limit in

the case R + _. As a result, we obtain the stress

-- -+,,eto/¢.A.+.,,-..,., tp, (x)- p_-(,)- f, (x)+ h(x)+Oy

which is produced in a semi-infinite plate with the edge x = 0 reinforced by

a thin rod.

Here we have

e*_ I xF_ (x) = 9 ]/_ e" V_errcI_-- V(Bi q p;) Fo)_

• F+ eric(_) = 9 _ e'-'_'d'q, Ph _"=

Ill

Bio +

°" Ilfi
/-----__ z:_Ll

r,-+- I

+.-_+,, 0..,--_+.:_+ ; ; , _u.++,.-_+ J

/145

.+

r_ -0._

.m-2._

8 I0 "

Figure 2
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where

If r
c

where

Figure 3

Analysis of Temperature Stresses on the /144

Reinforced Circular Edge of an Infinite

Plate for a Nonstationary Thermal Regime

On the edge of the plate r = R, and we ob-

tain the following from (24)

* tx),or = D (art. -- a_h)tK]. O. = -- O, _- ate (to* -- (26)

t. = to(]- e-"'Q_%, j
If the edge of the plate r = R is not rein-

forced = 0, rK = O, = O, cK = 0, st ,

EK = 0), we then have the following instead of

(26)

_,=O,_o=atE(t:--_K), L = to[I-- e--MIQ_k)], (27)

l

o = x' J,j {[V,(#,+B*J0(T_I'+[_/,(@+B'Y,(#p }'
0

_:_'= Q%_.._..,,,,,a.= AR,n"= BR,Br,,-:.__S,

Fo'=-_,.
R o

= 0, we have the following from (26), (27)

• !

o,= _.+_+,II-_-=; If-_-_'Q_'I,.-_.-._]}.
0; : --Ore --e--Nil |] __ Q(Ok,]A...B..mk];

Or =0, O0 = _C "-M|,

t Or , • I --, a -- O§

atEt ° ' _ ' .tEto '

(28)

(29)

(29)
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w

E _, • .1*) I
mE _ m_._x , mx = m--_.., Gt _.'

, _ (29) 1

Figures 2 and 3 present graphs showing the stress distribution (28) and

(29) as a function of Fo*, Bi*, m for a steel (steel carbide) plate, whose

circular edge is reinforced by a thin bronze rod (90/10 bronze). When com-

piling the graphs, we used a graph for the function Q(k) IA, = B* = given in
i m_0

(Ref. 3). The stresses always decrease with an increase in the condition Bi*.

(Figure 2)

It may be seen from the graph showing the stress distrihution o* /that its
r

maximum values for all m is reached for finite values of Fo*. With an increase

in Bi*, the values of Fo* -- corresponding to the maximum values of o* -- de-
r

crease considerably. The maximum values of o* decrease with an increase in
r

Bi.

* (Figure 3) for certain large values of m areThe maximum stress values °8

also reached for finite values of Fo*, decreasing with an increase in,Bi* and

remaining negative. However, for small m the maximum stress values °8 are

always reached under a stationary thermal regime -- i.e., for an infinitely

large value of Fo*.

The solid line in Figure 3 gives the stress in a reinforced plate, and

the dashed line gives the stress in an un-reinforced plate;

1 _teel carbide '

r_= O; _ = _"_ron_e = O. 5 ;_
!

atbr°nz_ I _. E _ E stee3 carbide= 1.75.
_, = at--_-_eel--c_{_ --Ebronze

The author would like to thank Ya. S. Podstrigach for his discussions.
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i Translators Note: This is probably incorrect in the original Russian and

should be 30, 31.
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_ EFFECTOFCONCENTRATEDFORCESIN MULTIPLYCONNECTEDREGIONS_

A. S. Kosmodamianskiy _"
(Saratov) N 67 -Z4520

OQ

The study (Ref. 2) advanced an approximate method for determining the

stress state of an elastic isotropic medium weakened by a finite number of

circular holes. Distributed stresses were applied to the edges of these holes.

This method is extended in this article to the case when the medium is de-

formed under the influence of concentrated forces applied to the hole edges.

Let us investigate an elastic isotropic medium with two identical circular

holes. Concentrated forces are applied to the hole edges, as is shown in

Figure i. We shall assume the hole radius is r = i, and the distance between
the hole centers is 2_.

The problem of the stress state of such a medium may be reduced to deter-

mining the functions of a complex variable #(z) and X(Z) from the following

boundary conditions on the hole edges (Ref. 8):

(t) + (t -- t) ?' (t i + X (t-"]=/. (1)

As is known (Ref. 5), the function f on the arc OlO 2 equals iP, and equals

zero on the arc o2o I.

Just as in (Ref. 8), we shall assume the following representation for the

functions _(z) and X(Z) :

.[ _ ,,(-,)_+'1 hi ,_k_+' (--I)*+t] (2)
?(z)= _ =k[(,_--_ "1-(-;-'_]. x (z)= L(,- o_ _J"

k--I k--I

Due to the geometric and force symmetry existing in the case under con-

sideration, in order to determine the constants _k and Bk which are introduced

it is sufficient to employ the boundary conditions on the edge of the right

hole. They are satisfied automatically on the edge of the left hole. We shall

not examine the constants which have no influence on the stress distribution

in the medium.

For points on the edge of the right hole, we may represent the functions

and X as

_ " (--I) k+l _* _ (--1) k'l-i ',P=**(o)+ =,(_, x= (o)+ {h_ (35
k--I k--i

Here _*(o) and X (o) represent the boundary values of the functions which

are holomorphic in the region outside of the edge of the right hole. We may

represent them in the following form:

_* (¢) _ =_"*;
k-i

x*(_)= _ Pk_-i,
where _ = z - _. k-t

(4)
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I I
! i
i 2L ,--------_ J_--"--- e_ I,

Figure i Figure 2

We find the following from the boundary condition (i) on the edge of the

right hole, employing the method of N. I. Muskhelishvili:

?* (r,) = _ in ¢¢__+ I + (__l),r--k (--l)'s*+" m--! __

k--I m--I

| m °--m_ (_+,,,_, • c,+_+,)},
p, ¢ + _ (5)

X* (r,) = -- _ m _ + (r, -- r,-,) ?*' (r,) Jr

-+ t(-l)k_k_-* 'E I IV"c'-' st+m_-.,x-- I k+m--i • " ,

where

k--i ' m--[

Here E = (2_)-i; _k = i = 2; _k > 2 = i.

An infinite algebraic system having the following form is obtained to

determine the coefficients _k and Bk:

•, + Y,(- I)_+_ {m_,_+_(_+_- _,_+,_,+_+_,_- _R*'*+_*-,+_-,,_= l*;
m-! (6)

p:+ _,f_, ,,*+m+,._* .*+m= t,,
._ _-- "1 _'rn'_k+m_ i-

m=, l

• ---P 't--D k+' + 11.p:= p.+ k_,- (k- 2)_,__.I.= -t,= 2_k'. . (7)

After determining the constant coefficients _k and Bk from system

(6), the desired functions _(z) and X(Z) assume the following form

i: o'i: --,i-----T-_-- 1 -Jr (--l) k (z -- (--I {pr_k.4.m_| --

k-- ! m-- I

- m,_ (c_'+__,- _'_+_+,)_+ Y,(-])_+'_ (: + 1)-*; (8)
k--I

Z(Z) = --_P lnZ-- l + i + (z -- l --z l----l) ?" (z --. l) "l'i'_'l'__

k*-i k-! m-I

The stresses produced in the medium may be determined by means of the

functions found from the well known formulas (Ref. 8). Let the medium be

deformed by concentrated forces, just as is shown in Figure 2. In this case,

the functions (5) assume the form
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?* (_) = _._ In _ + (--1)hr. :-k (--1)m' _'' {[3,,,c_,_...l --

-- m_m(CL.,_:, -- _'_+.,+,)!; (9)
P _--i [ I_ ,,

x* (_) y_ In _-_ + _,_-- (¢)+=

k--I m--i

The algebraic system for determining the coefficients _k and Bk is obtain-

ed in the form of (6). We thus have

P -_ [(--I) _+' +'ll. (10)/k = t_ = -- 2-_"

It must be noted that the left hand sides of equations (6) have the same

form as for many other loads of the medium (internal pressure on the hole

edges; tension of the medium at infinity; pure shear, etc.).

If the medium is weakened by an infinite series of circular holes, and if

concentrated forces are applied to the edges of these holes (Figure 3), then

the functions _(z) and X(Z) may be represented in the following form (Ref. i)

k-1.3. ,, . (:-nO*' (z) (z+nt_"
• -" "-- k_l.3 .... n=.--,,

(ii)

,1 ( :.: (

Figure 3

/150

A system is obtained for determining the coefficients ak and Bk
°

• ml. 3, ... k*,+! m

- (k + _)_+,cL,_,! + _*_+,cL,_3 =/,; .I

vRI, 3 ....

Here %k = 2 E

(i0). n=0

(12)

n-k, and the values of fk and tk are obtained in the form of

If concentrated forces are applied to the hole edges just as is shown in

Figure i, then the left hand sides of system (12) do not change, and the right

hand sides assume the form of (7).

In calculating the stress close to any of the hole edges, we must keep the
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fact in mind that

F_-_' k(z-_n0,= --In l--
k_l k (Z--nl) k k-l (13)

(n = 1, 2, ...).

Formulas (13) make it possible to sum up the poorly converging series and

to obtain an effective solution of the problem under consideration.

! 4

Figure 4

Let us now discuss the case when

the medium with two holes, which was

examined previously, is deformed by

concentrated forces as is shown in

Figure 4.1

In contrast to the previous cases,

theprincipal vector of the external
stresses applied to each hole edge will

differ from zero. In contrast to ex-

pressions (2), the desired functions

_(z) and X(Z) will have the following form (Ref. 3):

P z--l? (z) = 2g (l + _) In _--] q- Otkl(Z--l)--k'_(--l)k+l(7''_-l)"k];

k--l !

zP z-- l _ !g (z) = 2- _i _- x) In _ + Pk [(Z .'-- l)/' -_- (--l)k+l(Z "_-./)--,t|..:
• k--I '

Let us introduce the functions _*(_) and X*(_) in the form of (4).

determine them by employing the method of N. I. Muskhelishvili. We obtain

','(÷-.'+,)I+
k--i

m

-'_$,,,_, -- m_,,, (_+./_,- "_+.,+,)l:
m=-I

(14)

We may

(15)

p
x* (_) = (_- _-') _*' g) + 2=o + _) (-i)_+, _- _*__* + _-'

k---I

-- _ --(1 + z)In (--1 -- _-')} q- _,_-* ,I--'l'+m""-t',.'*+--,z'+"-"
k--I ram!

In order to determine the constant coefficients _k and Bk just as

in the preceding cases, an infinite algebraic system such as (6) is obtained:

/k=N(--I)_+' l+x\k _-I -es ; t1=Nkl_--],

I
The influence of a concentrated force applied to the edge of one of two

circular holes weakening the medium was studied by M. Z. Narodetskiy (Ref. 6)

by introducing special functions.
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P _-- l --t t
ts--2"_" 2(l+x) ;

P (-i)*/-I--t, = 2_" -"f- " )
(16)

When calculating the stress, the coefficients _k and Bk may be advantage-

ously represented as follows, within an accuracy of P/2w:

(--I) k+l , , , (._!) kk + =k; _k __+_:'. (17)=k

Then the functions by means of which the stresses are expressed assume

the following form

_(z)= ;l_mT_--i+lh 1+ !

+ ,

+ ,,;
k--I

l _InT_"i+ - I • (1 +

_ (-IF'+'[I]+ _,[_+ J"

(18)

TABLE i

0 °

2.5

0
15
3O
45
60
75
9O
105

- 4 3

--0,67 --0,00 0,10
--0,58 --0,00 0,10
--0,31 . 0,00; 0,08

0,11 0,01 0,07
0,67 0,04 0,04
1,31 0,I0 0,01
2,00 023 --0,03
2,69 0,50 --0#4

0,12
0,I 2
0,I0
0.O9
O.O6
0,02

--0,04
--0,1 !

TABLE i (cont.)

0 •

m I 4

120
135
150
165
180

3,331 1,07
3,89 [ 2,16
4,31[ 3,91
4,58] 5,93

2,67 1 4,89

S [ 2,5

o,(_ I-O)2O
0,571--028
2,_1 0,09
6,501 4.85
7,65[ 13,45

I

_otation

P
ax]_

P

TABLE 2

--5,40

- 1,15

--I123

2,49

2.5

-- 22,84

5,3_

By way of an example, we have calculated the stresses o 0 influencing the

surfaces which are normal to the edge of the right hole, for different distances

between the holes. Table 1 presents the results of these calculations. The

case when _ = _ pertains to a medium with one right hole.

In addition, Table 2 presents the results derived from calculations for

stresses ox and ay having an influence at the point O

It may be seen from these tables that, when the holes converge, the stress /153

concentration sharply increases at the points between the holes, and decreases

at the points of the hole edges which are far from the place where the con-

centrated forces are applied.

Let us now discuss the case when a medium with two circular holes is an

anisotropic medium. We shall thus assume that the complex parameters character-

izing the medium anisotropy are purely imaginary, i.e., _I = iB, _2 = i6.

The problem of the stress state of such a medium may be reduced, as is
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known, to determining two functions of the complex variables _p(Zp)

following boundary conditions (Ref. 4):

2 Re [¢, (z,) + ¢, (z0] = f,; 2 Re [_,¢, (z,) + p,a,, (:,)] = h.

Let us transform these conditions to the following form:

Here we have

¢,. k,¢'-,- k_¢'-;= --B#, ,, + k,_, + k,_,,= p#.

from the

(19)

(20)

k, = • (_ + 8); k2 = 2_r; k, = 2_r; • = (P -- _)-1; f --___', + if,. (21)

Just as in (Ref.

functions _p(Zp) (p

3), we may assume the following representations for the

-- 1.2)

¢_ = _* + g, (:_'+ _0]*J;
k--I

"¢' = _** ' + l:,(,:+ ;o_J'
k-I

(22)

where

mlP .

Z:= _--l; z: =m_p +-_p , moD=0.5(l--/p,); (23)

mip = 0.5 (1 + ipp). •

Let the medium be deformed in the same way as is shown in Figure 2. In

order to determine the coefficients _k

we then obtain the following infinite algebraic system

, i J_-I
_k'+ (m_'--k,) Ak k,e: ----P1_ [] _- (-- |)*+1] _ ;

,_, + (m_-- kO B: + k,A** = --P,p il + (--1)*+'1 ?-'
• / - T •

Here we have

and _k in the same way as previously,

E_o _'o =_:-- (-l);+, _.A,. B**----
mo---P ' i-- I

= _ (--l)'+'_t,B,h.
i-I

(24)

(25)

Thus the coefficients Aik and Bik are obtained when the functions [_p(Z*p +

+ 2_)] -i are expanded in series with respect to the Fabry polynomials P(z*)
P

within the ellipses obtained from the right ellipse by means of the well

known affine transformations

|_, (z_ + 21)]-'= _A,P,(z_); [_= (z; +.2l)|-'= _B,,P,(z;); ! (26)
k--O _ k--O -

After the coefficients _k and _k are determined from system (24), the

function _ (z) is known on the basis of (22). The stresses arising in an
P P

anisotropic medium may be determined by means of this function as follows
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r

m

(Ref. 6):

% = 2Re|_I_ + _]; %= 2Rel_q__;|;,=u= (27)
• =--2Rel_-b_2_].

If concentrated forces are applied in another manner to the hole edges,but
the principalstress vector on each hole equals zero, then only the right hand

sides of equations (24) need to be changed when solving the problem:.

If rincipalvector of the external stresses applied to the hole edges does
not equal zero on each edge, then the representation of the function (22) must

be changed by adding logarithmic terms to it, just as was done in the monograph
(Ref. 7).
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->DESIGNOF SHELLSOFREVOLUTIONWITHA SMALLHOLEAT THEAPEX
UNDERSYMMETRICALANDANTISYMMETRICALLOAD i_

_ V. I. Kruglyakova ! /_ :_ w _ • _

(Leningrad) N 6 7 -- 24 5 2 1

The problem of symmetrical and antisymmetrical load for shells of rev-

olution with a small hole at the apex may be solved uniformly.

The angles 0 and _ are selected as the curvilinear coordinates (Figure i).

The customary dependence of the desired and given quantities on the angle # is
assumed:

(u, w, up, 0)= (uk, wk, u_k, _k)cosk?, i
v = vk sin k?,

(Tl, T2, MI, Me, Qp)=(Tl.k, T2. t, J_l.k, ]_2. k, Qe. k) cos k?);
• (ql, qn) = (q,. k, q_. k) cosk?; (i)

- _ = qz k sin k_,

so that k = 0 yields a symmetrical case, and k = I yields an antisymmetrical
case.

i. Shells formed by the revolution of second order curves around their

axes of symmetry are investigated. The main radii of curvature for them have

the following form

= Ro ' Rt= P_ ;:
Rz (1 + 7 sinS_,/s., (1 + _ sinso)lit [ (2)

A sphere corresponds to the value of T = 0; a parabloid corresponds to the

value y = -i; ellipsoids correspond to the value of T > -i; and hyperboloids

correspond to 7 < -i.

We shall employ the equation obtained by V. V. Novozhilov (Ref. 2) as the

initial equation. Under the assumption of relationships (1) this equation is

the customary equation for the main complex function

d'7"k___[f2Rl |)ctg O l dR,]dT,dO= -- [_, ,R= -- R'-_" .'_J _ ''[- (3)

R,( e,) k - R,=+_ I--2 si--f_T_ + i_-R;rh=0.

We shall not investigate a nonhomogeneous equation here, since no difficult-

ies are usually entailed in finding a particular solution of the problem. For

the class of shells under consideration, the main equation assumes the form

d'Tk 1+2Tsin'O cosO dT/t
dO-'T'+ I +'[sinS0 " sin0 dO

k s • l---[sin'O Tk-J- (4)
sin'O (1 +'[sin'O) s

+ i Ro
c (1 + "tsinlO)I/l'_- O.

We may solve it by the: method of "the reference" equation (Ref. i),

assuming the following equation as the reference Bessel equation
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I" ( n')
(5)

The fundamental solution of this equation may be written in modified Bessel

functions of the first and second type:

i"l,, (_ ]f i) = bern_ + i being; I (6)
i-"Kn (_ 1/'7) = ker_ _ + i kei, _,

1,1, r,. o

Figure i

where ber 4, bei 4, ker 4, kei
n n n n

are the known tabulated functions of

Thomson of the first and second type
of the order n.

n(0), 4(0) -- the unknown functions to be determined.

We shall try to find the solution

pf equation (4) in the following form

Tk = _ (O)y [_ {0)], (7)

where the bar over the complex quantity

designates the conjugation sign; y --

solution of the reference equation;

Substituting (7) in (4), with allowance for (5), we obtain the following
for the latter

/ + • (8)
"q(0) -- _b'(I-}- 7 sin' O)'Is sin O'

e

• S dO_(0) k (I +-[sin'Ofh (9)
0

)h h--shell thickness
C =l / 12(1 ___2)'

and in addition condition n = k.

Since we are interested in the solution close to the small hole at the

shell apex, and assuming that the angle e is sufficiently small, we shall

expand the integrand (9) in Taylor series. Performing the integration, we
obtain

_(0) = kO [1 +O(O_]._XO. (lO)

.of the solution
Neglecting the portion/striving to infinity with an increase in the angle,

we may write the desired function in the final form:

Tt = _ (0) (A -- iB) (--i) n (kern kO-- i kein kO). (11)

When performing differentiation from this point on, we shall disregard

the variability of the slowly changing amplitude function n(0) as compared with

the variability of the Thomson function. Figure 2 presents the graph for the
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function n(O) for different values of y _ 0.

2 Let us employ T* *
• i, k, T 2, k to designate the particular solution of the

problem. With the value obtained for the fundamental function Tk, the complex

stresses may be determined according to the following formulas

Thus, the

Tj., = T[ , + ic -_T " do R,_i,,o ;
i *

stresses and moments arising in the shell are determined:

"T,,k = ReT,,k, T_,k = ReT_.h; i
[

MI.k--------clmlT2. k-_vTI, k} , M2. k------clmlT|.k"Jr-v_.k].l

(12)

(13)

The following expressions (Ref. 3) are obtained for the boundary inter-

section force and the bending moment:

Finally,

the angle

• c{i.d_k, k } " ;Q,,k=Q_.k-s--i_ _ h,--_---_ctg0 IrnTk ; Q_.k = cos0T[ k;: (14)
i

• l Rtsm 0 J)'i
we have the following relationship for radial displacement and

of rotation for the shell meridian

= -t "-_--/Ke T* -t- c (1 "t-,), LR, im_--

,raN}R, ; (15)

we

R=sin 0/'r* *
u_,k = --f_.2, _-- _T,.k);.

• 1 _-- k ctg 0 Re04= E_ {_ Re Tk}.

3. Investigating the symmetrical case separately for stresses and moments,
obtain

T= = T; + _- ctg 0 (1 "t- 3"sins 0)s/, IA kei' 7,0 -t- B ker' 7,01;

{[  ot:Ts = T: -I- _q(0) A ker _.0---T- (1 -t- "fsin s Opt=kei' 7,0--

ct,o ' _.e]};B Ikei _0 -- .-X'- (1 -{- "fsin s O)s,'s ker'

.+ B[ker _,0--(1- V)_J(l + "fsinsO)s/skei'.kO]}; ,

-{[ ]'M==c,;(O) A vkei_.O (l--v)ctg°-- "i-" (1 + "fsinsO)sis ker' ),0 -I,,

(16a)

(16b)

[ . ctgO(1 +'[sin'0)'l, k.ei'_.0]} "+B , ker 7,0+ (1 -- ,,)--y-
(16d)

In addition, we obtain the edge compliance coefficients, using them to

designate the radial displacement and edge angle of rotation corresponding to

the influence of a single force and moment on the edge -- i.e., assuming the

followiqg on the edge
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f l'O

I.I

0.9

0,7

__...,... I-3

_ 1=7

0 2O ,¢0 O0 6O #"
t_

Figure 2

.o = no+ ,,,, (qo- Qo)+ a,,Mo';
Oo= a,, (Qo-- q;) + a.,,Mo,"

(17)

where the compliance coefficients have

the form

" sint 0o _ + _[ !

als = asl ---- _/'12 (1--- _s) ks sin0° ?o?oq- _o_
(1 -I- "fsin s 0o)1is X.

_" + _" I
a2_ = I12(1 -- _')l't4 k (1 + I sinS0o) _ " _'i"

Here O0 corresponds to the hole edge in

4. The stresses

following values

Figure 3

the shell :

?o = ker _,0o; T; -- ker' _,0o;

_o = kei k0o; _o -----kei' ).0o,

"Do -----?o-- (l + v)ctgt_° (! + "_sin s Oo)'/z_;;T

• o= to+ (l + '0':t_-_(l .+.'_sinsOo)-,,_,;;
Xo= 0o_;- Vo_;,
and moments in the antisymmetrical case assume the

T,,, T;,, _l(O) 1 8)',s{ [ 8(1 sinSO)= +.-if-( +Tsin s A kctg +'l ker[ tO

., ! ' . _0]/
__kerlkO ]- B[k'ctgO (l+-[ sin' O)ke,x XO-- si_ke.lx J,, ;

T,a'-=T" {kei,)_O + (1+ "f::n' °)"!'D' ¢tg 0 (1 "F '_.,--_ (O)A

,,+,.,o.,,.,.[ . -x, kctg0(1 +'[smS0)keh x0- kei_X0 ;

sins 0)l/s
Mm c_ (0) A {ker_),0 -- (1 -- ,)

(1 + "I

(18)

(19)

(20)

(21a)

(21b)
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" I 1_ !
+ (1 --v) (1 + _ _,,n*e)'t, [k ctg 8 (1 + "Isin s 0) ker_ X0-- _ ker, k0JJ ;

M,.,= (o),i{vker,x0- (I- v)('+ k2 X

+ _i0, B {. kei. k0 + (1--.) (1 + "fsin'")'/' IX et. 0 (1 + -f s,n' 0, ker_ X0 _ si_. eker. X0]}ks X "I

In this case, the compliance coefficients may be written as follows

i ks sln'Oo ;¢_+_|. I ]a;l = fmO- _,) s +7,in'Oo "x-7-" T;
• sin0o X° I
a_s = a.I,= --k'_l+ 7sin.0d,/,"

a!,=Vtl2(l--") kX°_'E-_.! R']_" _'_; j[

We employ the following notation here

(21c)

(21d)

(22)

• t

_PI= keh kOo; ?; ----ker i kOo;
_, = keizkOo; _ ' kei_kO,;

__ . , • | , I':_-'[ _'| §0)11|[_kctg 00 (,1+ "I S11"100)'I "-- _'_1] ;¢_ = ?,-- (l + ,,)('

% = 'b+(I + ,,)(!

Xz = ¢i

qr|

•Xs = Cz

+ q_z

X s =

+

w [ " ]+ I sin° 80)'1' kctg O° (1 + -fsin' 0o)?, -- _ ?, •

(1%""Isin'O°) _;--'_1]--

• etge° ]( 1%""fsins0o)71. -U" 71 ;

, -- ctg Oo. l -
(! +Tsin s Oo)?z -i- 1-,j.-r.

(l.+"r sin" 0o)_; -- ct_.o $,];

(1 + _'sin'0o) ?:-- _,1]' +

(,

(23)

(24a)

(24b)

(24c)

(24d)

(24e)

5. By setting y = 0, k =_, q(0_l,we obtain the case of the sphere with

the radius R from the above relationships. We must assume X = a_ and
a2

Y b 2 - 1 for an ellipsoidal shell, where a, b are the ellipse semiaxes.

By way of an example, we investigated a shell with a small hole at the

(b a o)apex = 2, _ = 200, 0 = 8 under the influence of internal pressure. The

curves in Figure 3 give the ratios of the maximum stress Oma x = [ocatl+ I Obend I
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and the greatest catenary stress to the momentless stress in the shell for a
rigidly sealed hole tdashed line) and for a hole reinforced by an elastic ring
with a lid (solid line).

6. The homogeneousequation for a synnnetrically loaded spherical shell

d'T dT @--T = 0 (25)
a-ff + ctg0_ "+i c
• %

may be reduced to the following by the substitution of z = T _sin e :

itj'-i'-]- ;in_0 _i +T+ T_ +i z=0. (26)

Disregarding small terms, we arrive at the Bessel equation and obtain the

following solution

F cA.+
+ iB 0 (ker),0 -- i kei ).0), i (27)

which is an "accurate" solution in the sense that its error is on the order of

h as compared with unity.
R

We obtain the following more accurate formulas for the compliance coeffi-
cients

'si#0o _ _-,A m = 12(1 -- vl) __ . .

'_ ./_ _'o"o+ _,N IAla=As,=--I 12(l--vt)-ro ........
• h .o W. E_' (28)

A2t=l/12(I--v)_._,

where we employ the following notation

80= q,, + -W-,q,;;

F (0) = _ _ ;

e
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(29)

Wt = qo + (-q-v) _-ctg0o • %;
(30)

W2=  -E-0 cTo -- (1 + _) _- ctg 0o." [3o; Wo -- [3oW2-- _'oWt.

In order to determine the accuracy of the solution, the compliance

coefficients for the sphere, computed according to formulas (18) and according

to the customary asymptotic method _eckeler approximation) were compared with

the more accurate coefficients for several values of the wall tNinness _ = i,
R 20

I i i i

50 ' i00' 200' 500' and for the angles 00 from 5 to 90 ° .

Figure 4 presents an approximate graph for the compliance coefficients

corresponding to the Bessel (solid line) and Gecke_r (dashed line) solutions

with respect to the more accuract values (assumed to be unity on the graph)

for the parameter R/h, equalling 50 and 200. The compliance coefficients
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t,

I.I

I
0,7

0

" _=_oo

•. .,,JJ _/_ °

20

0
/0o 200 300. ,;oo R/h

20 40 60 80 8°

fo_,

20_

Figure 4 Figure 5

corresponding to the solution (18) were close to the more accurate coefficients.

For all values of the parameters, the divergence between them did not exceed

5%. For purposes of comparison, a dashed line was drawn for the value of the

compliance coefficients obtained from (18) by substituting sin e _ 0 in every
expression.

Thus, the variational simplification, consisting of substituting the type

sin 0 _ 0 only in the coefficients of the initial equation, without complicat-

ing the calculations, made it possible to widen the range of applicability of

the Bessel asymptote up to 90 ° at least. However, it is not advantageous to
employ it at larger angles.
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Thus, the graph shown in Figure 5 makes it possible to determine the

angle 00 beginning with which the Bessel solution may be replaced by the

significantly simpler Geckeler solution. The curves shown on the graph corree

spond to the errors of the Geckelerapproximation as compared with the more

accurate approximation equalling 5, i0 and 20%.
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" PROPAGATION OF AN ELASTIC EXPANSION WAVE FROM A CIRCULAR HOLE

IN A CYLINDRICALLY ANISOTROPIC, INHOMOGENEOUS PLATE j

V. D. Kubenko /:_ _ -- _

(Kiev) N 67 i 24 5 2 2.
This article studies the propagation of stress in a thin, infinite plate

when a pressure which remains constant is applied to the edge of the circular

hole suddenly. It is assumed that the plate material is cylindrically anisotrop-

ic (the anisotropy axis coincides with the z-axis of the cylindrical coordinate

system r, 0, z, Figure I) and is continuously inhomogeneous, so that the Young
moduli are functions of the radial coordinate

I

Er'= Elr_; E, = EsP', :

while

_,=const; E, _, k; lm(m)=O.=

The static solution of this problem is given in (Ref. 47). The dynamic

problem for a homogeneous medium was investigated in (Ref. 5, 7). The article

(Ref. 8) studies the propagation of a equivoluminal wave in an isotropic

medium with a shear modulus which changes over the radius according to a power

law (plane deformation). As will be demonstmated, there is a certain analogy

between the present problem and that investigated in (Ref. 8), which was given

in (Ref. 6) for a homogeneous isotropic material.
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We should point out that the problem for a cylindrical cavityin an in-

finite medium of the above-mentioned type can be solved in absolutely the same

way.

i. If we introduce the following notation

r r i = cd , E,a_' .
= _- ; -; ; Co= (] _.,,..,,)-p,

E,==-' U; o_ =*"" _o *o= (l - ,,_,,,),, *-_' = *3

(where u is the radial displacement; o and G 0 -- radial and circular normalr

stresses, a -- hole radius), we then obtain the following equation for radial

displacement in the region of Laplace images, with allowance for zero initial

conditions ;

d"-U_.m-_-I dOu i
d,,-_ ;- d7 l.o_'-" + (i)

+ (k -- mvo)l0.Ti----O

and the following boundary conditions

r" dO + _, y =

Here we have
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O (_, p) = ie-_i; (_, i) dt :-, ;; @, t}.
o
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The second condition in (2) is the condition of perturbation damping at
infinity. Equation (i) maybe reduced to a Bessel equation, and in the case
m # 2 we have the following solution

0 = (p)x, ( p -- P -' -
_,1--2 -I-B(p) f, --r ;:'---_ (3)

| • .

v = _ m'-F 4(k -- rove), -..

Figure 1

where K , I are the Bessel functions

of the imaginary argument.

In the case m = 2, we have the

Euler equation with the following
solution

U = .4, (p) _, + B, (p) _-; I

c,.=----I _ FP' q-k + I--2,;. (4)
I

we should point out that when the

medium density p changes along the

radius according to the power law with an arbitrary real exponent, the solution

of the problem does not differ in principle from the solution investigated.

A study of the Bessel function orders (3) shows that they are always real.

In the case m + _ _, we have v + i, and for m + 2 we have v + _.

. Let us investigate the case m < 2.

(÷)_' = ?=-I p-i K, /"
1-- _.-_ ,.._-- _0K(÷)÷K(÷)

==1__ m
2"

Employing (2), we obtain

= _=_,ze, p__J)
N (p) ' (5)

Significant difficulties are entailed in directly changing to the class of

inverse transforms in (5). Let us rewrite (5) in the following form

_ (6)

O_, p)e'N_)=e'Z_, p)_-'.

e__l 1_e problem now consists of finding the inverse transforms , --K

e_ ! _ _ . They were dete_ined in (Ref. 3). The absolute con-
' 2

P

vergence of the Laplace transfo_ations of these inverse transforms may be

readily shown. If we employ the following notation

then, according to the convolution theorem, from (6) we obtain the following in
the class of inverse transforms

] (7)
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Differentiating

Combining (7)

Similarly to

Here we have

(7) with respect to r, we shall have
i

_'(L _)K(_--,)a_=(_ ,)z_. h_'-_+z'V._)_ "-'.

and (8), we obtain

i

,_. _)K(7-,) a,= (,+ ,.- Dz_. i)_-+z'_. b_!-;

I

_% (L ,) K (7--,0 d,_= ("o + k -- z (_. 7)_,. z' @. i) _'--.'Y0) +

(7), we may obtain

(r, _)._ (i -- _)d_= z, (_, i) _'-'.

2_ _ [(_ + ; + V(< + b'- D'--

--(=_+1 .--V(_+lf--l),l+

.__ (.,,_-_- Int- ]/(a_ -_- I) =- IV-'-_ (=_-_ ] -- V ('<-_-])'- l) "-I
2 Vi=_+l)'-i --;

("--1) 2_,(,,_ ]){_,_+? I('t q-i I / (_i-F',',,. I)'--'z_, i)=H i "'=

×[(V__I)_-I-! J+l . l', ,)_,,_
- .i+! (ai_i

_/(J+ I)'- ., ')-</;

')'I_/ .-r2t •

In the case _ = 1

Here H (_) is

z(?, "0=H(_ "raa- l)[=i+ l_L-_--_- _(=? -I- l)'-- _'--

--_ln "_+'+1/(_i+_, _)'-:'].

the Heavyside function.

X

(8)

Equations (7) - (ii) are integral Volterra

Since the right hand parts of all the equations
time interval

0< i< _'-'l-'Z-"

(9)

(10)

(ii)

(12)

(13)

(14)

i (15)

equations of the first type.

obtained equal zero in the

in equations (7) - (Ii) we must set the lower limit as

It is apparent that we have the following in this

r - 1

interv, al
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q----a' = aft,----_,----0. !
i (16)

At the momentum front we have

_'-- 1
• . (17)

from which we obtain its propagation rate

d? m
c = -- = V_-_ = F_-. (18)

" dl %.

or, in the customary notation,

.=V-- E,v,- .(I--_o) p" (19)
c

Substituting _ = r_-- 1 + e for e ÷ 0 in the integral equations, we find that

at the momentum front we have
! 3

.fi = O; a' =--r-%--_ -m,
9

! !

_,= _ F- ? +?'."
t

• ! , . (20)
f'f" =o =--veV- _ + _-m.

-0.8 I i - "

• , g =y-_-7 m.

" % The integral equations obtained may
-0.,; %_ be readily solved numerically, as was

I%_m __ done in (Ref. 7), for example.

0 10 .20 _" When the Bessel functions may be

- expressed in terms of elementary func-

tions, the transition to the space of

Figure 2 the inverse transforms is possible by

direct inversion of formula (5), employ-

ing contour integration and the theorem

of residues. Figure 2 presents the
i

results thus obtained for k = i, _8 = 4'

m % 0.7. It may be readily shown that

in the case t ÷ co the stress state in the plate strives asymptotically to the
static state.

.

(4) with the following boundary condition

r-' I'_-i_ t' ;,7=u] ----, _= 1;

We then have

Let us now set m = 2. In this case, we may employ the solution of

@, p) -- exp {-- InV V'p'_} b l k" 1 2,O.:
_p(b+ VpT'-_-e9 ' : --'O, g! : + --

Since u(r, _) ÷ pU(r, p) = U, we have

(21)
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# _, p) = -p c- _._V p,+ e'). Vp-_%-_+g' _
_(_,+ l/p'+e') V_--+e' (:)+,

For transformations like (22), there is a formula for transition

inverse transform which yields

•,_(_;_)=I (ei)- St(V _,- _,,1._,(_)d_;lO)+ v(p),
O"

where Jl(Z) is the Bessel function.

%.

Determining f(t), we obtain

gF_

_= H ('t- in F)_b-' [e-__ _exp {.b "V-_} Jt (z, dz] ;
e

.=.

In • O _ g ' :

i

o,= H #- ]. _){b-- _+______+ (b" ,)'_-- k___ +

7V - _'} J, (z)_-:- I
• In; .L

-- g (b -- 1) ln_ S J' (e V,':- m'6 . _
In7

(22)

to the

(23)

(24)

(25)

(26)

At the momentum front we have

- t= in_,

from which we obtain the wave propagation rate c = e_ = r, or in the customary
notation

C_._F( f E:r_ .--'_r_,) I_ " (27)

At the momentum front we have

a=o,_ _=r-'. o,=--1, % =--_,,.

Figure 3 presents the dependence of _r on t for v0 = i 14' Vr = l-_--

Employing the theorem of the limiting transform value,

T-]+l
following from (21) limaff, t)= limp0_, p)=

i - p-.o b-t-g' :

(28)

we have the
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which corresponds to the static case.
gV 7,- |n';

_,= H (I--In _)[--l q-gln' I )/z'J'(Z)Jr,'In'P_]j.

Employing the relationship given in (Ref. i)
. I

_f, (x) dx 2=!, --a K . '
V x" + a' T

o

we obtain the following from (29)

iim $ = -- P'.,

which also corresponds to the static case.

Ill
"fia

"0.,_

o

"0.4
0

I _ F.4 :

F.f2

Formula (25) may be rewritten as follows:

(29)

I
2 4 0 8 t

Figure 3

According to (Ref. 8), we shall employ this method to try and obtain a

solution in the case under consideration. It is necessary that the second con-

dition in (2) be satisfied only in a finite time interval from the moment that

the load is applied. It is natural to only retain the function K in the sol-
v

ution, setting B(p) = O. The problem may then be reduced in formal terms to

the integral equations (7) - (ii) with the same kernel and right hand sides.

Formulas (16) - (20) also hold.

4. In the case m > 2, the argument

of the Bessel function in (3) is negative

in the case p > O, and these functions

do not acquire real values. In addition,

for r ÷ _ the argument _ r_ ÷ 0, where

K has a singularity. Consequently, the
v

condition of perturbation damping by it

is not satisfied.

Let us determine the time interval in which the wave reaches infinity:
I

= (3o)

• "i-- T- .....

Thus, in the case m > 2 the wave reaches infinity at a finite moment of

time t . It follows from (20) that

=" -- P Ir" I _; °s Jr 0 _ (31)

in the case r ÷ _.
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Consequently, the stresses at the wave front increase, and become infin-

itely large during the time E . From this time on, the solution loses any
oo

physical meaning, and the static stress state is not reached.

3
Let us examine an example. Let us set k = i. Then v =--- in the case

= 1 2
ve _, m_5.7.
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Weobtain the following from (5)

F=fT-t ] _ p_+=
2.'-'_J • , _p;p 0,'+ ),p+ ).,,)

I>0; ),: l--,,--m,---q.

The integrand satisfies the Jordan lemma in the case _ < i-- , and has simple

poles at the points p = 0 and = _ + iV; the latter are roots of the
2 Pl, 2 --

equation p + %p + %_ = 0. We obtain

m

• [(÷ ,---) (l--T-' ;--' _ '
_-=-i-r + F -- ? sin_/ t-- _ "i

1 --+--I _--!

8 • 3 8

I( --- +t -- 2 (=+ 2) _- -- • 4_, • _l,4), • 2 + 1 2(=+2) 2 = I__2(a+2)F--T e

• =--6 ---E'+" =--6 --- =--6.-- T" .
__- :z +"_ r -i-eo= -- -VF r el, •

. . S_ ).

,.-
X=--0,175, _=0,562, ==--!,85; r" l<t <_./.

• ... ..... (=...... I .....

(32a)

(32b)

(32c)

(32d)

Figure 4 shows the dependence of _ on _ for different _.
r

The result obtained above shows that, if only a diverging wave (B(p) = 0)

is taken into account, it is not possible to formulate a solution which is
valid in every moment of time.

er

.q

o

F-¢,5

F-f.O F" P't'2l

- I I

1=-2

m -, ,,

_ e

(

a4, -a _

Tigure 4

Let us set the following as the

boundary condition at infinity

D_, p)=0; _-+oo, (33)

keeping the fact in mind that in the

case _ ÷ = the material becomes rigid,

Then th e general solution (3), together

with (33a) and the first condition (2),

yields

A (p) = 9sin,_zB; (P);

.• "|

1P ; (34a)
B (p) -- 2 sin ,_XS (p) + T (.p)

x
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O=--r '-. ; "_= _
p 2 sin_=

- S 0:,1-1-T 0_1
I¢

so, =c'-. K.
=,,-.+..-.,,,,(÷)+

(34b)

(34c)

(34d)

Taking the fact into account that

' K,(z) = " !/_, (z) /, (z)];
" | " •

we obtain the following from (34)

" ' i,'m,+,(_-=,0
_ 2 2

lira u 17, t) = lira pO _, p) --- -, ,
_.... r-O m i '

"-f. _, + "_"V .,' + 4 (k -- re, O)

which corresponds to the static case.
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'
!

_ONE CONDITION SUFFICIENT FOR THE EXISTENCE OF A SECONDARY LOAD

PRODUCING ZERO MOMENT STATE IN A SHELL _i:

P. I. Kudrik J_

N67 - 24 52
Fo_ulation of the problem. L_t _s investigate a shell'-having posit_v_

curvature; a÷balanced force field (X, T) is applied to the middle surface of
this shell. X is the external surface load, _-- the boundary stress. Let this

field be such that the stress state which it produces in the shell differs

from a zero moment state. We must determine the secondary load X 0 which is

such that the new force field (X + X0, T) produces a zero moment stress state

in the shell under consideration.
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This article establishes the condition which is sufficient for the exist-

ence of a secondary load X for a wide class of shells having positive curvature.

This load is the generalized potential load given in (Ref. i, page 575). It is

found that, if the edge of the shell which is weakened by one or two holes,

contains the arc of any line which is conjugably+isometric on the

middle surface (Ref. i, page 122), then the load X 0 always exists.

Method of solving the problem. In order to solve the problem, we shall

employ the method advanced by I. N. Vekua (Ref. i). As is known, we may write

t he main system of equations for the zero moment theory of shells as follows

(Ref. i) :

V.T_ "F, XP = O; b@r'P +Z = 0; T°p. = T_ (=, p = l, 2), i (a)

where T_8 are the contravariant tensor components of stress; Aa -- symbol

of the covariant differentiation; X I and X 2 -- contravariant components

of the surface load; Z -- its normal component; b 8 -- coefficient of the

second quadratic form of the middle surface.
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If the given shell having positive curvature (K > O) belongs to a coordin-

ate system which is conjugably isometric, then -- introducing the complex

stress function according to the following formula

w (_)= u + iv = gK*/' (T**-- iT") q- _g'/'K"/.Z (_=x* + ixg, (I)

we may reduce the system of equations (a) to the equation given in (Ref. i):

_w--Bw=F; O_=.-f _-_+i_-fi ; _EG,

where

= --r,,+ 2r.);B T (r=,--r**+ --T (r,,

F = _lg'/'K'l'o¢(Z )-- K'/'_x'--ix'g'i=;2 I

where g is the discriminant of the first quadratic form of the middle surface

S, and G is the homeomorphous form of this surface in the _-plane. The solutions
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of equation (2) maybe called generalized analytical functions. The complex
stress function w maybe expressed as follows in terms of the tangential
stresses applied to the shell transverse cross-section with the normal £:

d_
--_pg "_ _" (3)

However, since the force field (X, _) does not produce a zero moment

stress state in the shell by definition, at the boundary F of the region G the

following inequality will hold

K-"q .
, _- . • =- _ E r. i (b)

We shall now try to determine the supplementary load:

lx.-- $

..-> -.>

where (rI and r2 are the fundamental base vectors on the surface S, and are
-+ ->

the orthonormals to it), so that the new force field (X + X0,T ) produces a

zero moment state in the shell. Then at the boundary F of region G we obtain

the following, instead of inequality (b)

w = -- -__ io, n -- _ g'l,K -'!4 (Z + Zo); 't E P. (5)

It may be readily seen that a determination of the function Z0, and also
-->

of the supplementary load X0, leads to the solution of the generalized boundary

value problem of Riemann-Hilbert:

_w--Bw = F; _E O; Re li_"w]= 2K-'tIT "._;xEP._ (A)

In order to clarify the solvability of this problem, let us investigate

the correlated problem:

O_w* +'B_* = O; [ E.G; Re [i_'w*i = O, z E r. ; (A*)
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In addition, let us employ n and n* respectively, to designate the indices

of the boundary values problems (A) and (A*) (Ref. i, 2, 3). For a shell

weakened by one hole, we shall then have n = - 2, n* = i. If the shell has

two holes, then n = n* = 0. Consequently, the well known conditions of con-

jugation (Ref. i, pages 180, 596) must be satisfied in order that there may be

a solution of the inhomogeneous problem (A), since the indices of this problem

are not positive. These conjugation conditions are satisfied eaah t_me that

one of the shell holes contains an arc of any line which is conjugably isometric

on the middle surface.

Let us prove this statement. We shall employ r0 to designate that portion

of the boundary for the region G which is a homeomorphic form of the arc given

above on the surface S. Let x I = xl(s); x 2 = const be the equation of the curve
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F0. Then the boundary .condition for the problem (A*) may be assumedto have
dx1

the form Re[iT'm*] = - d--_ Im m* = 0 (on F0) on this curve. It follows that
_* _ O; _ C G from this relationship and the uniqueness theory of Kirleman
(Ref. ], page 158). This substantiates the validity of our statement. Thus,
with the given assumptions regarding the shell edge, the inhomogeneousproblem
of Riemann-Hilbert (A) is always solvable.

Employing equation (5), wemay now readily find the boundary value of the
normal componentof the supplementary load X0 (4):

d_ (6)
Zo = -- (Z + 2_"g-_1=K'l'w + (_) + 4i:'g--_/=T _. _ E P, =

where _+ is the boundary value of the solution _ of the inhomegeneous problem

(A). The plus sign over w indicates that the limiting value of the function

w is chosen when the point _ strives to the profile F inside the region G.

Since in the general solution of the Riemann-Hilbert problem (A) there are no

nontrivial, linearily independent homogeneous solutions (since the correlated

problem (A*) does not have one solution which differs from zero either

for a simply connected or for a doubly connected region), we may extend the

function Z0 (6) continuously within the region G uniquely:

Zo= -- (Z+2_'=g-_nK..w+ _) +4i_'g--'1=T_ ; C ¢ G. (7)

Substituting (_) in (4), we may find the explicit expression for the

supplementary load X 0 by means of which a zero moment state is produced in the

shell. It follows from the above statements that there is only one correcting

load (4) for the shells under consideration. We shall investigate below the

spherical shell with a curvilinear hole, and we shall present the analytical

expression for the function w+ in terms of which the load X0 may be determined.

Examples. Let us investigate a spherical shell with a circular hole which

is loaded by surface and edge stresses. We shall select the parallels and

meridians as the lines on the sphere which are isometric in conjugate terms. A

circle is then the homeomorphic form of this shell in the plane _ = x I + ix 2.

It may then be mapped onto the exterior of the unit circle G+.
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We shall employ G- to designate the complementary minor G+ up to the entire

_-plane. We may then represent the problem (A) for our shell in the following
form:

d_w-- 0 (n _; Re 1:,'_1 = 2K-"._ _ re [ie'w,1; • ¢ r, (A.)_---

where w0 is the special solution of the inhomogeneous equation B_O = F (for

the sphere B _ 0 [Ref. i]).

Consequently, the determination of the function Z0 for a spherical shell

leads to a solution of the boundary value problem of Riemann-Hilbert for the

customary analytical functions

Rel(a(_)+ib(_))wl=¢(_); a+ib--i_"; (8)
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c_ 2K--'hT • -- Re |ix'_o]; _ E r:
(8)

As is known, we may replace this problem by the equivalent conjugate problem

(Ref. 3) w+(_),=D(_)w-(_)q-d(_) (onX_;

D a-- ib
=--a--_' d" a--_/b" (9)

G-. Since the index of the problem (9) is negative, its solution may be re-

presented in the following form:

X (t)f c _,
"= -_- J (a+ ib)Z + (_)"F------_' (I0)

r

where X(_) is the canonical function corresponding to the conjugate problem

(9):
! I' In ['_'D ('z) l d'l

Thus, the components of the correcting load X0 are obtained in explicit

form by means of formulas (5), (i0), (4).

/17___._.88

Let us examine the case when the spherical shell is weakened by an arbi-

trary curvilinear hole without corner points. Then a certain region G which is

defined by the profile F will be the homeomorphic form of the middle surface of

this shell in the S-plane. Let _ = _(_) be the relationship which performs the

conformal mapping of the unit circle I_l < 1 in the w-plane onto the region G

in the _-plane. The boundary value problem (A0) then assumes the following

form (ii)
,ha,=O _c_c]elwl<l); P-,el,z(Oa']=[_(O; _'r,

where

_ _ -- Re [i_'_.];(0= t,"(o);p(o)=

where o is a point on the circle y - Iol = 1; ds* -- an arc element of this

circle. Consequently, we may apply this same method of solution to the boundary

value problem (A0) as to the problem (8), corresponding to a spherical shell

with a circular hole.

In conclusion, we would like to note that the homeomorphic form G+ of a

spherical shell in the _-plane may have the form of a triangle, a trapezoid, a

rectangle, or another polygon with rounded apexes. The study (Ref. 4) presents

the explicit expressions for the conformal mappings of these regions onto a

circle.
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_" GENERALIZATIONOFTHEGRIFFITH-SNEDDONCRITERIONTO THECASE
OFAN INHOMOGENEOUSELASTICBODY

V. I Mossakovski_AM_'T. Rybka Z !J'- _ _.

(Dnepropetrovsk) N 67 - LI"''_

The study by Griffith (Ref. 6), which is devoted to the formation and

development of cracks in a brittle body, employs the energy approach. The main

assumptions advanced by the Griffith theory state that stress forces, which

are similar to forces influencing the surface of a liquid, influence the sur-

face of a solid body, and that the decrease in the potential energy of the body

W when a crack is formed, having the length 2a, is balanced by the increase in

the surface energy of the crack U.
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The necessary condition for the crack increase is

a (w--u) o.- (1)_ ,

Griffith obtained a formula for the critical breaking point when an in-

finite plate with a rectilinear crack having the length 2a is subjected to

tension by forces which are perpendicular to the line of the crack

]/2---_ (2)

where E is the Young's modulus; v -- Poisson coefficient; T -- surface stress of
the material.

Sneddon (Ref. 4) generalized the perturbation theory of Griffith to the

three-dimensional case. It was shown in (Ref. 4) that a body with a circular

plane crack having the radius a is perturbed when the disruptive stress p,

which is normal to the crack plane, exceeds the critical value PO' and we have

t _ET ,Po = _(1 --,_" (3)

Based omthe Griffith concept, the present article establishes the criterion/180

for the perturbation of the inhomogeneous elastic body.

Formulation of the problem and derivation of boundary conditions. We shall

investigate the problem of the elasticity theory concerning two elastic half-

spaces with different elastic properties. In the plane connecting these half-

spaces there is a circular crack having the radius a. The tensile stresses

p = const, are applied at infinity; these stresses are perpendicular to the

crack plane. We shall introduce the rectangular Cartesian coordinates in such

a way that the boundary of the elastic halfspaces coincides with the z = 0

plane. We shall place the origin at the crack center.

We may write the solution of the problem in the following form

'u----_,q-z_; v=?,q-z_; w----?sq-Z_, (4)

where u(x, y, z), v(x, y, z), w(x, y, z) are the projections of the elastic

displacements on the axis of the rectangular coordinates; _i' ¢2' _3' _ -- the
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functions of x, y, z which are harmonic in space and which are related by the
relationship

+ _F _ "_/" (5)

We shall employ the index + to designate the functions pertaining to the

upper halfspace, and the index - to designate the functions pertaining to the

lower halfspace. In order to determine the unknowns of the functions we have

the boundary conditions:

(6)

°+z(x'Y'Z)=a_'(X'Y'Z); l!Inside the crack•_+ (x, y, z) = _ (x, y, z); . ,

•+(x, y, z)= _j(x, y, z); ]_P=/_+f<=:i

u+ (x,y, z)= u- (x,y, z); %+ (x,y, z)= oF (X,y,z); |P Outside the crack

v+ (x. y, z) = v- (x. y, z); ,+ (x, y, z) = 'i (x, y. z); I P=
w+(x, y, z) =w-(x, y, z); '_+ (x, y, z)= '_ (x, y, z);| =1 _+_> (7)

>a.

Expressing the stress in terms of deformation, employing (4), and intro-

ducing the notation _4+ (x. y. z) ----_i+ (x. y. z)
_i ox + _'£(x. y,z)_

O_ ' 9

! (8)

Oz : Ox "1-. Oy ' i

we obtain the boundary conditions for determining the functions 43 and 44 in

the following form:

, _c./'Oz _,'--Oz Jz--o- ' !'Inside the crack (9)

?;- (x, y, O)-- A_?;-(x, y, O)= C; J P< a;

: . Oz -- #z -o; Outside the crack

?+ (x, y, O) = _7 (x, y. 0); P> a; (10)

0,0'% + _ - O_+ _ J' On the entire
-_ -- O,-_ -- _= _ -- B, a-_ = 0; plane z = 0,

* - °,.+ r, a,;- /-_- -- BI -- U, _ -- L,I-_ O; (ii)

We employ the following notation

A, = x,+.__._.___..C,
F=

B, = _' (h + _,). B== _' (x=+ _,1.
x,+_= ' X,+_= '

_., (_,_+ 2_,) P; (12)
• (12)

O_-- ' • " _*'

where Xl, )_2' lal' l_2 are the Lamg coefficients for the lower and upper half-

spaces, respectively; C -- constant to be determined.

Let us set the functions 4;(x, y, z) and 4_(x, y, z) in the lower half-

space, which equal 4_(x, y, z) and 4_(x, y, z), respectively, at the boundary

(z = 0), i.e.,

/181

166



v:(x,y,0)= %+(x,y,0); _:(x,_,0)= t2(x,y,o). (13)

We then have

Employing

where

(14)

(13) and (14), we obtain the following from relationships (Ii)

_ (_, y, o) = K_7 (x, y, o) - H_ (x, y, 0);
(15)

K ---B,B,Jr-D,D, B,D, .4-B,DI

D:--B: ; H---, D:--B: " (16)

and (15) into account, we may transform the boundaryTaking (13), (14)

conditions outside of the crack

Here we have

(i0) to the following form

_7(x,y, o)- Ao_-(x,y,o)= o; i

O.L --_" _ ']z--o

(17)

Introducing the functions

F, (x, y, z) = _. (x. y, ,)-- A,_ 7 (X, y, Z);

F, (x, y, z) = 77 (x, y, z)-- _,_( (x, y, Z),

we obtain the following problem of the potential theory for these

F, (x,y,0)= C; -[aF,(_y,z)] = C,; p< a;_-o

Fz(x,y, O)--AF,(x, y, O)=O;. . [OF,(x.y,z)_ BaF'(x'Y'z)]_z .-. =0

p >a,

where we employ the notation

A,-- Ao _ Iq-AnAo a ,

(18)

functions

(19)

(20)

Reduction of the axisymmetric problem of the potential theory to the plane

problem. The harmonic functions Fl(X , y, z) and F2(x , y, z), which satisfy

the boundary conditions (19), in view of the fact that they are not dependent

on the angle _, may be designated by FI(O , z) and F2(O, z), respectively, and

we may represent them in the following form

Fa(P, Z) = _l,(_) lo (Pg)e="d= _ -- l, 2). (21)
|

Differentiating (21) with respect to z, we obtain
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oF, (p,z)._, = I, (_) _/, (P_)e"d_ (k = 1, 2).
0

(22)

Let us represent the Bessel function in the form of the boundary integrals

r+_- . l I .2- P ------s

,j (i-÷)o_,,_,_;lo (p_) = _-_ .'--] l "
_(_-+T')

C...im

rl-im

e--lw

(23)

Substituting these expressions in (21) and (22), changing the order of

integration, and setting

iIa(a) ea-ae_da == _k(s, z) (k == 1, 2), ' (24)

we obtain

_.r(-, --T s)
: _, (s. z) p'-:ds;

¢ It',,,

(k-._ |, 2)., (25)

OFt (p, :) ! q_, (s, z) p*-Sds;

-- I

Let us introduce the functions Ul(X , z) and U2(x , z) which are harmonic

in the z < 0-plane, and which are antisymmetrical with respect to the Ox-axis

Uklx. z)= f, (a) sin l_) e'_da (k----l, 2)., (26)
0

Differentiating (26) with respect to z, we obtain

OU,(x.,)?; (a)sin(o.x)e,_da (k---- |, 2). I (27)

Substituting the following r+l.

I : 1 1 .

2 -.r (-----._ s_

_,n(.,) _ _(,+__.) -.
C--I w

• sin (°uO--'--Li_" r "._+._--
9 [

(28)
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in (26)
d

the order of integration, and employing (24). we obtain

c÷;- 1 I

U, (x, z) = _, (s, z) ;

e÷l..

I. ")'_ ',) •

2s..-er
au_ ix, z)

F(T+T, )
e--

and (27). instead of the functions _ sin (_x) and sin (ax). changing

(k - I, 2).
(29)

Employing the formulas

I i r (,) r @)x2.+_)..2;p2,-, (x' -- ps)_-'dp = 2 r (. + p)

i 1 r 1,) r @1x.._,p-2,-_-I (p __ xl)P-ldp = _ _ ,

(30)

we obtain the following from relationships (25) and (29)

0 S pdp I OUk (x, :),_ F,(p,z) = • •o ,r_--r-__# T o_ '

_ i FkLo.z) pdp J _,(x. ,1.• )/_'- x' = 4" "-"E-- '

+i fou,(_,,) _ F,(p, z);
p

:p

I a {'OVk(x.:). x_ _.Ep_ _--E- f_--_, =
e

i'_°u+(_.'). _ z);
P

-_'_J m •__,o=
I

(k=l, 2)1 (31)

On the basis of (31) which are valid in the case z = 0. conditions (19)

may be given in the following form

/184

rou,(_,,)]=4c; rav,(=,+l=4c,=;ixi<o;
L_J=-o ..L o, .J,-o !

[ °v,(x,')l=o; t_l>a.:t-[ou,_(.,,) _ou,o.(*'')lj.,=o; ou_,.,)_ _--w-:,,.,

(32)
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Solution of the plane problem. Criterion of disturbance. Following the

procedure of Muskhelishvili (Ref. 3), let us introduce the following notation:

S -- lower halfplane (z < 0); S+ -- upper halfplane (z > 0); L' -- segment

- a < x < a of the axis Ox; L" -- remaining portion of this axis.

The functions Ul(X , z) and U2(x, z) which are harmonic in the halfplane

z < 0 will be regarded as real parts of the functions PI(_) and _2(¢) which

are analytical in this halfplane, i.e.,

'  33)U, (x, z) = _ vT,(D + (_ = x + iz; k = I, 2). r

Let us introduce the functions _i(¢) and _2(_) which are analytical over

the entire plane ¢, with the exception of the section coinciding with L':

"-7----"

The boundary conditions for _1(¢) and _2(¢) on L' are as follows:

(34)

(35)

The conditions on L" are satisfied by the appropriate selection of the

functions _i and _2" Equations (35) may be reduced to linear conjugate prob-

lems, whose solution will be

_--a I _--a -1

C--a _
\_ + a] j '

9., (r.) 2 (A --B) C i _--a -_ C--a

c-o, (c-°l-']-_a_},--a'[(C+-a) -FkC-Fa! J

where

• 1 lnA-{ -V';_'B"f=_ _" v_-."

The boundary values of the functions 3Uk(x' z) and _Uk(X' z)
_x az

found from the formulas

= _ A[.o.l(x)-- .o+(x)]-- B[_T (x)+ .o.,+(x)] ;_

ou, ' { (x) }= _(A- a) [°l -- _+ (x)]-- [.o.E(x)+ _+ (x)] ;

ou, , { ' }"&-.= 2(--_-_) A [_F(x)+ _,+(x)]-- B [o;- (x). _,+(x)] ;

,u,__ , { }.,__-_=___) [%(x) + o.+(x)]- [_3(x)- _E (x)].

may be

(38a)

(38b)

(38c)

(38d)
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The presence of a crack having the radius a in the body lowers its poten-
tial energy by the amount

W = _ p(w --uP--)do.i (39)

where

Here the integration region o is a circle of the radius a. The surface

energy of the crack is

U 2_a'T. (40)

Taking the fact into account that w+(x, y, 0) = _(x, y, 0); w-(x, y, 0) =

= _(x, y, 0), and employing relationships (36), (38a) - (38d), (31), (18) and

15), we obtain

W = 2_p' P_s'l u _,+ _,_'(i -Jr-_,_,) (41)

h + =X*= l:---_-_,'Xs=_; O In=; (42)
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where

= %_+1g is
Fs

the bielastic constant.

Substituting the values of W from (41) and of U from (40) in relationship

(i), we obtain the magnitude of the disturbing stress as a function of the
crack radius

//- 2r_,_l_,(_--l)--_ l --i)lP°= a [_, + _:_,+ _,_ (1+ Z,_l (O,+ l)e ' (43)

In the case of a homogeneous body (_i = _2 = _, XI = ×2 = ×)' we obtain

f_r _ (44)P0=

Taking the fact into account that

Z

P= (1_--9_9 and X = 3 _ 4_,

we have the following from relationship (44)

xETPo = (45)
2(l -- _')a'

which coincides with the Sneddon result.

In the special case when one of the halfspaces is absolutely rigid (_i =

= _), disturbance occurs in the case

16='TIx' '(Xs-- 1)P0 = aT.s(l.'_ + 4=')in Xe"
(46)
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In conclusion, we would like to present the formulas we obtained for
determining the normal and shearing stresses outside the crack on the division
plane : .

0
|

% "E,(I+ _0(; --2_--E,(I + _0(l--2_0 7--
!

2a'O' \ . f p--

2p aO

d
o

4p e, (I -- ,_l) + e, (l -- ,_,') f[( 2aO't __ (47)
'P* _- _- " E, (I _- _,) (I -- 2_ -- E, (I_- v@ (I -- 2v,)JL\P'--a_'

I

+,÷

/187

The integrals contained in (47) must be obtained by numerical methods.
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....._STRESSSTATEOFA PLANEWEAKENEDBYA BROKEN-LINECRACK_.
f:F "

V. I. Mossakovskiy, P. A. Zagubizhenko, P.\ Ye. Berkovich .Y: .:. • "_,

(Dnepropetrovsk) N 6 7 -- Z_'_ 5 ?
When an infinite plate which is weakened by a crack is _u_]ected to

tension by forces which are not perpendicular to the crack axis, as experiments

have shown, the crack develops at an angle to the initial direction. It is of

interest to determine the critical load in the case of such a crack propagation.

The concepts of Griffith (Ref. 4) must be utilized for this purpose. However,

we must know the stress distribution in a plane weakened by a broken-line crack

in order to solve the problem of the crack development.

-line
Formulation of the problem. An infinite plane weakened by a broken/crack;

the rupture angle _ is so small that sin 2_ = 2_, cos 2_ = i; the plane is

subjected to tension by stresses applied at infinity having the intensity p;

these stresses influence the middle section of the crack at the angle B; the

length of the inclined sections is small (the beginning of the crack develop-

ment is examined). It is assumed that the opposite edges of the crack lag

behind over its entire length.
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The boundary conditions in the middle of the crack have the following

form (the notation corresponds to that given in [Ref. 2])

v+= )"7= x_+ = x7 = o. '
We shall introduce a local coordinate system which is oriented along the

crack in the inclined sections (Figure i). In this system, we have

v_ = v;: = x_ = x_- = o.
I

We may express the boundary conditions in the inclined sections in terms

of the stress components in the unprimed axes based on the well known formulas

of the elasticity theory. Taking the smallness of the angle _ into account,
we obtain

v;. v..-2_x.; x;. " _= = (v,_x,)? +x r
i

Since the angle _ is small and the length of the inclined sections is also /189

_ Y'- XJ_, X'-small, we shall assume that the stresses Y , y,, Y Y' have no influence

at the points of the crack inclined sections, but do have an influence at the

points on the abscissa axis located under them. Such a procedure is generally

accepted, for example, in the theory of a thin wing. We thus arrive at the

problem of the tension of a plane containing a rectilinear crack with different

boundary conditions at different sections of its edge (Figure 2):

Y_=_=X_-----X_u =0 for--m.<t<a,

+ + _ (i)

+ + + I_-x,)_+x_ =0, (Yf-XD_+x;=o =<t<a.
Let us employ the formulas of N. I. Muskhelishvili (Ref. 2) expressing

the stress components in terms of two piecewise analytical functions _(z) and

_(z) of a complex variable

Yu -- iXu = $ (z) q- _ _) q- (z-- z) $' (_; i (2a)

173



For large

where

zl,

y,,- x, + 2ix_ = 2[_¢)'(z) + • (z)];
Yu + X, -----4 Re • (z);

(z)= _ (z)- ¢,(z)-- z¢,'(z).

we have

¢,(z) = r 2=(_+ _)• T + o ;

_(x-_Y_ ' +0(_),g(z)=r+P + 2_(.._) •¥

!

r--B +/c: r'--

(2b)

(2c)

(2d)

(3)

\ \

,\\e

.ff

y

p\\ V i.

-a o ,;

\\\\

Figure i Figure 2

a

Employing formulas (2) and boundary conditions (i), after simple trans- /190

formations we arrive at the following boundary value problems for the functions--

of the complex variable:

D

Here k =
i+

(5) are linear

valid over the

!_,-- _,-- ,o.-I- _l+ = i_,-- _ -- t24- _i-;
l_) + _)+ .o+ ,_l+ = _ 1_)+ _ + Q+ _l-;
i_, + _ .--.o--_l+ = i¢,+ __ o.__1-:
[@ -- _ _1i o _ _)!+ = _ I0 -- _ 4- o. _ _.i-;

lk¢,-- _ -- ko.+ Ol+ = lkO-- _ -- k_ + _l-;
lkO + • + k2 + _-]+= -- [kO + _ + kO + _]-;

!¢' + k_ -- k_ -- _]+ = 1¢)+ k_ -- k_ -- _]-;
io -- k_ + k_ -- _]+ = -- I¢ -- k_ + k_ -- _l-;
2i_
2i_ l't may be readily seen that the

combinations of the relationships (4)

entire length of the section (- a, a).

-- • < t < _; _ (4)
i

i

-- a < t < --_; i
,,<l <a.

(5)

first two relationships

and, consequently, are

Solving these problems of linear conjugation, we obtain

_) (Z) = -- k_ (z) -_- i (C' -}- 2_B', (2B --}- B' -- 2_C') z
- 2_, _ (I - 2i,_) Vz,-z_a, ;

.O. (Z) = -- _(_ (Z) -- i (C' --}- 2_B') (2B -}- B' -- 2_C')z
i--2i_ +0-m_)Vz'-_"

(6)
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Wemust solve two more linear conjugate problems:

I_--_ + _-- k_l+ [_--_ + k_ --ke;-;1--a< t< --_;
[q) _ _ _ k_ + k=l+ = _ [,_ _ __ k_ + k(2]- J_<t<a: (7)

Combining and subtracting these equations, as well as the last two equations

(4), we shall have the following relationships:

[q) -- (2 ]+ = k l_ -- Q]-; _ -- a < t < -- a;

lq)--_l-=kl_--g] + /a<t<a;

iq)-- _ ]+= 1_--_!-; }__ < t < a.i0-- _ i" -- i_-- ol-

Let us employ the following notation

_)(z)-- _ (z)= F, (z); (8)
• (z)-- _ (z)= ,% (z). I

We then obtain the following relationships on the crack edge:

6" (t) = kn, (t);I- a <, < - _,;
,T,(t) = kr,+ (t) J=< t < a;

e_ (t)= _ (t);} -e. (t) = e,+(t);. -" < t < _.

Let us map the exterior of the segment (- a, a) onto the exterior of a

circle having the unit radius (Figure 3) by means of the function

z=_(_)=_ _+ .

_.i[.,_
The following points

(9)

=+i V_'-"'.
01 _ a i

¢3 = 0

correspond to the points _, -_, located

on the upper edge of the section.

The following points

/191

Figure 3
--_--i;/.-w-C__o,

%= a

a_ iV%,_-m-_ I
G

correspond the points -e, e, located on the lower edge of the section.

We shall employ Z+ to designate the interior of the circle, and shall

employ Z- to designate the exterior. The mapping changes _(t) (i = i, 2) into

F?(o) and F?(t) into F7(_).
1 ' l 1

Employing the notation
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olaf -I- %_4 ----L'mi a_ l + o2% + L", !

we may write relationships (9) in the mapped region in the following form:

F;-(o)= k_;-_)on L';
(o)_-r;- <;)o_C'.

The functionl._FI(_) is not determined within the circle. Let us set

FI(_) = F2(_I in the case I_. < i.

Extending the function FI(_) over the entire plane of the variable _, we

obtain the linear conjugate problem for it:

_,=r.on L'.

The solution of this problem may be written in the following form

_ [(_-_O(_-_s)] T P.(_)F_ (_) - (__,=o (_- o_J _=-i" _

1 in k; P (_) = AI_2 + A2_ + A 3. In order to determine theHere y = 2_i n

coefficients AI, A 2 and A3, we have the conditions:

(i) In the case _ + _ FI(_) + - F';

(2) In the case _ ÷ 0 FI(_ ) ÷ - F';
the

(3) In/Laurent expansion of the function FI(_) in the vicinity of an in-

finitely removed point without the term _-i, as follows from (3), since in our
case X = Y = 0.

*a -a | u e
;I ; ; _ Ai --P'; As-0;

iV . I !I _ A,={°,',]r.=mr,.,o,_.,I
Finally, we have

Figure 4 f lit)----

<_- o0(c- 3]' r'_, - _'= -- _ oO (_ -- °,}J _*-- 1

The functions +(z) and _(z) are found from (8) and (6):

+[ (2B+ B' -- 2_C') z]q) (z)= . (| + 2i_) F_.(z)Jr i (C' -_- 25B') + T/z-_--__as j ;,

:_ (Z) = + [(] Jr 2i_)Fs(z)--i(C' + 2_B')-_- (2B+ B' -- 2,C')z] .

Utilizing formulas (2), we may compute the stress at the crack edge. The

graph showing the stress Xtx is shown in Figure 4. Thus, we have completely

solved the problem of the stress state in a plane weakened by a broken-line
crack.

We obtain the following from these

conditions
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.... PROPAGATION OF CRACKS OF A NEARLY CIRCULAR PLANAR FORM _._,

_V. _. ) _V.

Employing the results given in (Ref. 2), this article develops an approxi-

mate method for determining the magnitude of limiting and breaking load for an

unlimited brittle body weakened by a plane isolated crack having a nearly

circular planar form, when the body is loaded by a monotonically increasing

(proportional to a certain parameter) system of external stresses which are

symmetrical with respect to the crack plane.

/193

Formulation of the problem. Let us investigate an unlimited brittle

body with an isolated internal crack. We shall assume that this body _ referred

to a system of Cartesian rectangular coordinates xyz so that the plane xOy(z =

= 0) coincides with the crack plane, and the crack occupies a certain limited

area SO in this plane. Around the region SO in the z = 0 plane, let us depict

a circle with the radius a. We shall assume that the origin of the system xyz

is located in the center of the circle. In addition, we shall employ R0(8 ) to

designate the radius vector of the profile L 0 of the boundary for the region

SO, where 8 is the polar angle shown in the figure.

It is assumed that the crack SO bounded by the profile L 0 has an almost

circular form if the maximum value of the function:

,@) =a--R0@) (1)

is small as compared with the radius a of the circle. The function e(8) rep-

resents a non-negative, limited, and periodic function with the period 2_(0
£ S _ 2_).

Let the brittle body containing an internal planar crack, having a planar

in the crack plane having an almost circular planar (in the crack plane) form

be subjected to tension by monotonically increasing stresses Q, directed

symmetrically with respect to the crack plane. In particular, we shall assume

that Q = o (x, y, _) = o .
Z

For this case, we shall determine the smallest stress Q = Q, at which the

crack is in a state of dynamic equilibrium (Ref. i) at any one point of its

profile, i.e., we shall determine the smallest load Q = Q, at which the crack

under consideration begins to be propagated over the body cross-section. The

load Q, is called a critical, or limiting, load. However, when the external

load value Q = Q, is reached, this does not always lead to unstable crack prop-

agation over the body cross-section and, consequently, the load Q = Q, is not

always a breaking load.
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A determination of the load Q = Q, at which unstable crack propagation sets

in and at which the body is destroyed, is also of importance in determining

the strength properties of solid bodies weakened by cracks.

On the basis of results given in (Ref. 2), a method is given below for the

I=78



approximate determination of the load Q, and Q** for the case when a body is
weakenedby a plane isolated crack having an almost circular planar form, and
the external load Q is symmetrical with respect to the crack plane.

Main equations of the problem. The intensity of cohesion in the vicinity

of the profile L0 of this crack also increases monotonically during the mono-

tonic increase in the external load Q which is applied to a brittle body with

a plane crack SO (here the plane of the drawing is the crack plane, see the

figure). As is known form (Ref. I, 2), the following conditions

K(i=|, 2, 3, .), (2)limt/_,.a_(s,, p,, 0)=_ "" I
silo

J

are satisfied for the load Q : Q, in the vicinity of certain points R0(Bi) of

the profile L0, where K is the cohesion modulus (Ref. i); o_(Si, Bi' 0) --

elastic tensile stresses caused by the load Q = Q, in the vicinity of the points

R0(Bi); S. distance between the points of the body located in the crack

plane and the crack profile.he

_X

Thus, the problem of determining

the limiting load Q = Q, for a brittle

body with a plane crack having a curvi-

linear profile may be reduced to deter-

mining the elastic stresses in the

vicinity of the crack profile for a

given external load -- i.e., to deter-

mining the stress concentration in the

body with the crack. For this reason,

the study of stress concentration

around cuts (cracks, narrow cavities)

in a deformed elastic body is of sig-

nificant importance for the theory of

crack propagation during the brittle

fracture of solid bodies.
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However, the solution of this problem in the general case -- i.e., for an

arbitrary profile L0 -- entails great mathematical difficulties.

The study (Ref. 2) illustrated an approximate method for calculating the

stresses Oz(Si, _i' 0) in the vicinity of a plane crack profile in an un-

limited elastic body, when this profile has an almost circular form and when

the body is subjected to tension by a system of external stresses Q which are

symmetrical with respect to the crack plane. In accordance with the results

given in (Ref. 2), in this case, the stress component o (r, B, 0) in the
Z

vicinity of the crack profile may be approximately determined (within an

accuracy of small values of _ (B)/a, inclusively) by the following formula:

o. (r, 13, O)= V_ _ (a, [I) + , (I3)#; (a, 13)+ j
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.÷ (r-- a)_; (a, p)+ / ,

o

(3)

Here 0 < B < 2_; R0(B ) < r < a; r = s + R0(B) ; $(_, 3) and c(B), R0(B) are

known functions, and c(B) may be determined by equation (i) and

i f f V'a-'_'_ PZ[t (p, -) Or p (p, a),] pdpd,
_(r, p)= ,_,jj ,,+p-2,p_o_(,-m : + (4)

O0

+ 1/r' -- a' p(r, p), . i

where t (2, _) is the external pressure applied to the crack walls; p (2, _) --

normal stresses o (2, _, 0) arising in a continuous (without a crack) elastic
z

body in the z = 0 plane as the result of external stresses Q.

If we now employ the formulas (2) and (3), after certain transformations

we may readily obtain the approximate equation for computing the limiting

values of the load Q = 0(i) at which a dynamically balanced state sets in at

the points R0(Bi) of the crack profile L0, i.e., when the crack begins to be

propagated over the body cross-section in the vicinity of the points R0(Bi).

This equation has the following form:

+
2, ' (5)

0

Here we employ _.(a, B) to designate the value of the function _(a, B) at

the load Q = Q."
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In addition, employing equation (5), in each specific case we may determine

the load Q ffiQ,, as is done in (Ref. 2, 3).

The determination of the limiting (critical) load Q = Q, for a brittle

body weakened by a plane crack having an almost circular planar form is only

the first stage in solving this problem. In order to solve this problem

completely, it is necessary to determine the load Q = Q** also, i.e., the load

at which unstable development of the crack sets in, and at which the body is

destroyed.

We should note that when the external load Q reaches the value Q,, the

crack profile L0 in the vicinity of the points R0(Bi) is in a state of dynamic

equilibrium. With a further increase (even a small increase) in the load Q,

the profile begins to be displaced over the body cross-section in the plane
in which the crack is located.
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Let us determine the profile L (dashed line) of the dynamically stable
crack S which is formed from the crack SO (solid line) during the monotonic
increase of the load Q up to the value

(6)
Q = _q,.

where _ > i.

The radius vector of the profile L of the crack S may be represented in

the form of the following equation

R (_) = Ro (_) "I- ez (_), (7)

where R0(B ) is the radius vector of the profile L0; El(B) -- the still unknown

function of the argument B and the parameter %.

is

If the function El(B)/determined for the given profile configuration L0 of

the initial crack SO and the given value of the parameter %, the problem of the

profile of a dynamically stable crack will also be solved.

We have the following conditions for determining the function El(B). The

function El(B ) is positive and does not equal zero on the sections L.(j = i, 2
3

3, ...) of the profile L which do not coincide with the intitial profile L0;

the function El(B ) equals zero on the sections (L - Lj), i.e., on the sections

of L which coincide with the profile L 0. In addition, we should note that the

arcs Lj(j = i, 2, 3, ...) must change smoothely into the profile L0 of the

initial crack. Consequently, the function El(B) must satisfy the following

boundary conditions:

_ (p_;) _, (p_) = o; i = 1, 2, 3.... ;

" .
dp J_.,:/----L dl_ J_-p;/ 0,,

(8)

where we employ B* B*
lj and 2j to designate the polar angles corresponding to the

initial and final points of the arc L..
]

Since the sections Lj(j = i, 2, 3, ...) of the profile L (which do not

coincide with the initial profile L0) are in a state of dynamic equilibrium for

the load Q = %Q,, where X _ i, this condition (5) must be satisfied for these
sections.

Employing equations (i) and (7), and the function E(B) contained in equa-

tion (5), we may write the following:

t@)= a: R (P)= ,0(P)--t,(p), (9)
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where s0(B) = a - R0(B) is a known function; BIj <__B <__B2j.

Substituting this equation in (5), we obtain

x I p 1 ,]/2 [Re @)+ q O)], _* (a, [3)-- 1% ([3)_/,, (a, _) + _. _ ([3)_,, (a, [3) -J-

1'+o(_,)_, (a,
o

--_'fiZ d [e s (e) _, (a, _)l ctg _ = K,
i--1

where B* < B < B*
lj = = 2j; j = 1, 2, 3, ....

(10)

Equation (5) and, consequently, equation (i0) were compiled in (Ref. 2)

within an accuracy of terms whose order of smallness is no greater than c(B)/a,

where a is the radius of a circle drawn around the profile of the crack S.

The function el(B) to be determined from equation (i0) satisfies the in-

equality

O< ea@)_ ,,@),

i.e., the function Sl(B) is of the same order of smallness as compared with

the quantity a as the function c0(B). Therefore, without disturbing the

accuracy of equation (i0), we may simplify it somewhat if we retain anly

linear terms with respect to el(B) in this equation. Performing the requisite

transformations, we may represent equation (i0) within an accuracy of small

values of Cl(8)/a , inclusively, in the following form:

I-s p_

Here we introduce the following notation:

I { , _, (a, I+)+ 9 (t+)q,_,(a,_)__w(a, [3)=-y _, (a, [3) o
l'I

-- _ 1%(m) +, (a, _)] ctg d+ ;

(12)

K _ +. (a, 13)+ ½ ,o(l+)+$ (a, 13)--(a, x, I+)=m-

, rd "
-- _ _ _ t% (_) 0/, (a, m)] ctg P--_ _-dx.

o

(13)
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Equations (i0) and (ii) are fundamental equations for determining the form
of a dynamically balanced crack for a monotonic increase in the external load
%Q,when %> i. Solving this equation with respect to the function el(B ) for
a given configuration R0(B) of the initial crack and for a given load process,
and employing the boundary conditions (8), we may obtain the final function
El(B) and the dependenceof the angles B* B*lj' 2j on the parameter _.

In addition, employing the expression for the function _I(B) and equation
(7), wemay trace the kinetic propagation of the crack (having an almost
circular planar form) as the parameter _ increases, when this parameter
satisfies the following condition: I _ %_ %,.

Here %, is the limiting (largest) value of the parameter characterized by
the fact that the development of the dynamically balanced crack is stable for
all % < %,, and is unstable for %_ %,.

If the external load Q reaches the value %,Q,, further propagation of the
dynamically balanced crack becomesunstable, and the body is destroyed. Thus,
the magnitude of the breaking load Q = Q** for a body containing a plane
isolated crack, which has an almost circular planar form, maybe determined by
the equation

Q** = _*Q*" (14)

The value %, is the largest value of the parameter % at which the solution /199

of equation (ii) exists and at which the following inequality is satisfied

max {Ro @) + El (13)1_< a. (15)

Thus, by employing equation (ii), the boundary conditions (7), and formulas

(14), (15), in each specific case we may determine the breaking load for a

brittle body weakened by a macroscopic crack which has an almost circular

planar (crack plane) form, when the body is subjected to tension by a mono-

tonically increasing external load Q which is symmetrical to the crack plane.
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_-_STUDYOFTHESTRESSCONCENTRATIONNEARHOLESIN PLATESDURING
BENDINGc$

_i B. L. Pelekh . /,_:

(L'vov)

The articles (Ref. 2, 3, 6) investigated the pr o _o_centra-

tion around holes in plates during bending within the framework of classical

theory. They are represented most extensively in the monograph by G. N. Savin

(Ref. 3).

It was found more recently (Ref. 7) that, when only two boundary conditions

(out of three natural boundary conditions) are satisfied, the transverse shear-

ing stresses which should equal zero on the profile of a free hole, but which

do not equal zero, significantly increase with a decrease in the hole radius.

It is therefore natural to study these problems by means of the special

plate theories (Ref. i, 5, 8) in which it is possible to satisfy all three

boundary conditions on the hole profiles. The first attempt in this direction

was made by Reissner (Ref. 8). The problem of stress concentration around

holes during bending is studied below on the basis of equations advanced by

the theory of plates given in (Ref. 5).

We shall write the homogeneous equations of plate bending which were ob-

tained in (Ref. i) and, as a special case, were obtained from the more general

equations in (Ref. 5) encompassing various variations in the formulation of

conditions at the boundary, equidistant planes

._,, 3+=, ._(&w); I ' (i)
- 3+_&_u-- kSTu= ks_ + _-- _)" (&w),

where k 2 5 h-2
= _ (2h -- plate thickness).

When the boundary value problems are solved, three boundary conditions on

the profile are added to system (i) of the sixth order with respect to the

normal bending w and to such clearly defined independent quantities astheangles

of rotation of the normal element _x and yy pertaining to the middle plane.

For example, for the edge x = const:
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(i) In displacements and angles of rotation

=,=,;;

(2) In stresses and moments

System (i) may be reduced to the following form (Ref. 5)

A_w = O;

&cp.-- k=,p= O,
(2)
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and we have
h" o(_w)+ov,

'I'.=--_ l=_'_ _'
Ow h= 0 "

"_ = -- _ -- i'-_ "_ (AW) -- _ .
(3)

where D =

The stresses and moments may be determined according to the following
formulas (Ref. 5):

)N_ 2Eh 2Eh "{= &m
"_ + _ ; N,= a _-_,) _.fu + _ ;

v oxl--T\_+ -b_/J; -'

= 2 "tsXou + s_'_,
2Eh 3

3(1 - _2) is the cylindrical rigidity.

(4)

The assumed theory of plate bending (Ref. 5) yields the following express-

ions for the bending stresses:

°x="_£Zq-2h(l--'O 5 3h']_ "_'F 0//I;

Ou = 3M, . 8z ( 1 Z= _(ON u VON._--_ r-"l- 2h(l--'_) 5 3"h'] k"_- "[- Ox l ;

3Hxu Z " 3z [ 1 ONu_ ..-..= . + o, j,
3Nx ,- s ,I

3Nu .,.
¢" = T_ _n'-- z').

System (i) assumed simple solutions for several cases of the homo-

geneous stress state of a finite rectangular plate. Let us write these solu-

tions for two cases of plate loading:
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(i) Two-sided bending by the moments M and M over the edges
x y

l
w = _a 0 - ",*i[(_M_,-- M.) x" + O.M. -- Mu)y'h (6)

Nix --_Mu --_M_ + M_
"[x -- D (l __ ._) x; 'Tu ------D (I __,_) g;

(2) Torsion by the moments H distributed over the plate edges

" H

_"= O (_--I''''_ xy; (7)

H H

%= O(l_,)Y; % = D(--__,)x.

Let us write the corresponding solutions in polar coordinates. Let us

first limit ourselves to the case of purely cylindrical bending of a finite

rectangular plate by the moments M = M. We have
X

M_' ro--_) + (1 +,)cos20l; 1
W -----4D (I--,')"'" . (8)

Mp 1(I--,) +(1 + _) cos20l;
"[P-- 2D (1 -- '¢)
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"fs= -- _(I --_)sin _.

For stresses and moments, we obtain

M
M_ =-_(I +cos20); Me -_- (l -- cos 20);

Hps ---g-sin20; Np._Ns----O.

(8)

(9)

Formulas (9) coincide with the corresponding expressions obtained in the

classical theory of thin plate bending (Ref. 2, 3, 6).

% % %

On solution of (8) - (9) let us impose the solution W, yp, Ye of system

(i) which would satisfy the following conditions on the profile p=a:

For the case of a hole with rigid insert:

For the case of a free hole:

_p-I-_p ----O;
_,+ T0= O;

,v,+ 7v,= o;1

• Mpq- #[p --_O; I
H_o+/'Tpo ffi O.

In addition, the superposition

case p ÷ _).

(io)

(ii)

i

solution must vanish at infinity (in the /203

We shall try to determine these solutions in the following form (Ref. 4)

m = W o(p)+ IF,,,(p)cos mO + IF,,,(p)sin toO; (12)
,,,n.II m.,,-I i

? = _o (P)+ _ ,I,,.(p)cosmO + _ (I,;,,(p)sin toO,
m-,,l m,,,,[

where Wm(P) W' (p) are determined in the customary manner (Ref 2)' m " "

In order to find the function. @ (p) _ we obtain the equation

the general solution of which may be written as follows (Ref. 8):

(I),.(p)= CmJ,n (kp)-F D,nK= (kp).: (13)

Here Jm(kP) and K (kp) are the Bessel and Macdonald functions of the order mm

of the argument kp.

In order to fulfill the damping condition at infinity, we must select the

solution which only depends on the function K (kp) (Ref. 4), i.e.,
m

_m (P): OmKm _P)- (IBa)

With allowance for (8) - (ii), we finally obtain the solution to be
% %

applied _, Yp, T 0 in the following form
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= C_ in p -!- (CsP-_-t - C,) cos 20;

_,e= C,p_t + 2p_, [C,p_ i 4k' ]-- -- T'_-'_ CsP-s -I- D2Ks (kp) cos20;

_, k_o_;(kp)+ [2c,p-,+2c,p-,(1 4hs

=- -r_P /-
- kD,K;(kp)],i._.

(14)

The primes designate the derivatives of the Macdonald function with

respect to the argument kp. The integration constants appearing in expressions

(14) may be determined from the boundary conditions (i0) or (ii).

By way of an example, let us examine the case when an absolutely rigid
ring (hole with rigid insert) is sealed into a circular hole of a plate.

3,)'

Condition (i0) yields the followsing values for the constants Ci(i=l, 2,

Dj(j = 0,2):

Cz = _'_'(] + "0 ; _) 1 ;
.1+I

Ma I ! 8h_
c.= _,,_.) Ion; _0=o; o.= o,_(,-.)K;(,.)c.

• l -.1.-[ _,Tj .

Here we have

(:) -'[ ,,,-,Il = a'(l --,,) I + _)j.

The following expressions are obtained for the stresses and moments:
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'-"°'[• a'{ 4_ 96//'

l+! " _- F_-'_ + 6P(l--") +

64hs ) •
+ ,5_k (i -- _) K; (ta) [K,, (/zp) -- kpK; (kp)] --

• ..
M, = _- l + ," _ + -- 1 + ' l - ee' (l --,1--

" l+l

64hl )
5e,k (1 --_) K; (re) [K, (kp) -- kpXi(kp)] +

J

H.==T --1-- ._ 2 se'(i--,)
I+

16h* },5_,k(i -- _,)K; (ka) [kSp'K_' (kp) -- kp_K_ (kp) -F 4K, (kp)i -- •
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! £.o. l' sinm;
,+,NJ)

Np 4A4' at [ 2p'K_,(kp)] cos20 °,
= l--',," _ 1 "1"_ (_J l LFa /

. °[ ...
.. l+l

_a
The dependence of all the internal factors obtained on the parameter h

is apparent.

We may obtain all the previous dependences of classical theory (Ref. 3, 6)

in the case _ + _ from the expressions for stresses and moments on the profile
h

of a rigid insert.

The intersection stress N 8 represents an exception. On the profile of a

rigid insert N 8 and, consequently, the shearing stresses TSz equal zero in

in contrast to the classical theory, where

4M

N s = -- _ sin 20.

The figure shows the dependence of the concentration coefficient k =
omax

P on the parameter h "
o0
P

2

Ig

_ ,J,7,$

f

2 4

f
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The line corresponding to the concentration coefficient in the customary

theory of Kirchhoff (k = 3.75 for _ = 1/3) has an asymptotic form for the

curve obtained as _ increases indefinitely.
h

It may be seen from the graph that, even for holes which exceed the plate

thickness by a factor of three, the error of the classical theory when com-

puting the concentration coefficient is 10%. In the case _ = 4, it is 19.2%.

For very small (as compared with the plate thickness) holes, investigations

based on special plates theories (Ref. I, 5, 8) cannot provide reliable results.
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Therefore, the graph was not drawn clear to the end, although in the case _÷0
h

a finite limit which is close to unity and which depends on _ is obtained.
Such a problem would have to be studied on the basis of the equations of three-
dimensional elasticity theory.

For large ratios _ , the calculation of the stress concentration coeffi-
h

cients in classical theory does not lead to significant errors.

The method presented abovemay be employed to study the nature of stress
concentration around holes in several other cases of plate loading.
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EFFECTOFFOREIGNMACROINCLUSIONSONTHEDISTRIBUTIONOF
TEMPERATUREFIELDSANDSTRESSESIN ELASTICBODIES

'_ Ya" S" P°dstrigach_(L'vov) _ _)7 I"'Z_SZ_

A study of the stress state in bodies with foreign _nclusions, including

cavities, is of interest in determining the stability of many structural

elements. The results of these studies are also necessary for studying the

stability of materials -- in particular, metals -- containing nonuniformities

in the form of non-metallic macroinclusions, secondary phases, macrodefects of

a different type (pores, cracks, etc.)
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Depending upon the conditions under which the material is prepared and

processed, these nonuniformities may be three-dimensional, when their dimensions

are of the same order in every direction. They may also be surface nonuniform-

ities, if one of the dimensions is small as compared with the others, or they

may be linear nonuniformities under the condition that two dimensions are small

as compared with the third. In this connection, in the last two cases when a

calculational scheme is being selected, it is possible to employ the results

derived from the theory of thin plates and shells in the first approximation

or, correspondingly, the results derived from the theory of thin rods.

Due to the fact that many important elements of present day construction

operate under conditions of nonuniform heating, it is necessary to take into

account the temperature stresses caused by the incompatibility of purely thermal

deformations when their strength is being determined.

At least two reasons for the occurrence of incompatible thermal deformations

in a body may be pointed out. The first reason may be the change in the temp-

erature of the surrounding medium (external heating), which leads to non-

stationary, nonuniform heating.

The second, no less important, cause may be found in the cyclic deforma-

tion when considerable self-heating occurs, cmused by internal energy dissipa-

tion (Ref. ii, 18), for sufficiently large loading amplitudes. Nonuniformity

of the deformation field in the body, as well as heat exchange over its sur-

face during unfavorable conditions, may produce significant temperature grad-

ients. Thus, in addition to stresses caused by the external force loading,

additional temperature stresses may arise which have frequently a decisive

influence on the process of fatigue failure (Ref. 19).

/208

The material nonuniformity, caused by macroinclusions or cavities, leads

in its turn to additional disturbance of the temperature field and stress state.

Therefore, the temperature stresses caused by the disturbance of thermal fluxes

in the vicinity of foreign inclusions -- particularly cavities and holes --

must also be taken into account when investigating the stability of materials

functioning under conditions of nonuniform heating.

It is apparent that the magnitude and law of the temperature stress

distribution depends on the nature of the temperature field, which is determined
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by the solution of the thermoconductivity problem. Therefore, it is natural to
investigate the problem of determining temperature stresses together with the
corresponding problem of thermoconductivity. A fairly comprehensive account
of the initial assumptions, the derivation of the main equations, and also the
solution of manyspecific problems may be found in well knownmonographson
thermoelasticity and thermocondictivity (Ref. 7-10, 14, 15, 21). In this
article, we shall only deal with certain problems related to the influence of
elastic nonuniformities on the distribution of temperature fields and temp-
erature stresses in elastic bodies.

The majority of articles published on this subject (Ref. i, 12, 22-25)
pertain to the case of plane deformation, when it is assumedthat the tempera-
ture t dependsa.priori on two three-dimensional variables (xy), and may be
determined by the solution of the differential equation

a'At=_, I (i)

___2 _2 ; a2 temperature conductivity;
where A = x2 _ ,- .... time.

_y2

Such a two-dimensional temperature distribution -- which we shall call a

plane temperature field from this point on -- is possible in cylindrical bodies,

whose end faces are thermally insulated, and the initial and boundary conditions

on the cylindrical surface are identical in any transverse cross-section.

The articles mentioned above employ this formulation to investigate the

stationary problem of the disturbance of a uniform thermal flux in the vicinity

of cylindrical cavities of a different type, whose surfaces are thermally in- /209

sulated. Since the temperature field is stationary, the determination of

temperature stresses may be reduced to determining the stresses from the corres-

ponding dislocations (Ref. 13).

It is apparent that in the case of the temperature problem the results

pertaining to plane deformation cannot be directly transferred to the case of

the generalized plane stress state, as is done in the force problem, if the

end faces of the plate are not insulated. This is due to the fact that the

heat exchange on these surfaces significantly changes the formulation of, and

differential equation of the thermoconductivity problem. In this case, either

the three-dimensional thermocond_ctivity problem is investigated, or a temp-

erature value is introduced into the examination which is averaged over the

thickness and which satisfies the following equation in the case of heat ex-

change which is symmetrical with respect to the middle plane:

At--et = !a_ "_--_c, (2)

where c = _ ; _ -- coefficient of plate heat transfer; % -- thermoconductiv-

%h

ity; 2h -- thickness; t -- temperature of the surrounding medium.
c

In the case e = 0, the form of equations (i) and (2) coincide. However,

since the averaged temperature value occurs in (2), it is advantageous to call

the corresponding field the generalized plane temperature field.

In both cases, the stresses may be determined by the following formulas
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where U satisfies the inhomogeneous,biharmonic equation

AAU --ate At, (4)

whose general solution may be represented in the following form

- fS (5)•U=Re[_(z)+%(z)] 4 j tdzd_' i

where _t is the temperature coefficient of linear expansion; E -- Young's

modulus.

Thus, in determining the analytical functions _(z) and _(z) = X'(Z), in

the case of the first or second main problems the following boundary conditions
hold

ate(Z) + Z_' (z) + _ (z) = --f :aZ + C;

(6)

These conditions, and also the formulas of Kolosov-Muskhelishvili

-- ate21.1. (U + io) : "t._ (Z) -- Z_' (Z) -- _ (2.) d I- iT tdz;

,:,,,_ + %y = 2 [_' (z) q- T' (z)! -- diet;

Oz '

corresponding to the temperature change were first obtained by N. N. Lebedev

(Ref. 6, 7).

(7)

In the case

E* = E
1 - _2 instead of _,

plane temperature field,

of plane deformation, we must set _* = _(i + _), _ = i - _ '

v, E. We may take the following for nonstationary,

as a result of which (6),

instead of (5)

U= Rel_ _) + X_)l--a'atE itd%

(7) may be rewritten in the following form
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(z) + z_) + _ (z) = _'a,E-_ _ t d, + C;
I

"1

,_ (z)--z_' (z)--_ (z)= --2a'atE_ t d_;
w

2p (u -I-iv) = x_ (z) -- z?' (z) -- _ -I-2a'a,e _z _ td'q
co
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a= + _. = 2 l_' (z) + _-T_i -- 4ate (t -- t I ,-*);

4asa_ f_t.
..-- a.. + 2ia.u = 2 I_* (z) + _' (z)l -- t,; ,j _ ax.

m

If the generalized plane temperature field is stationary, and the function

tc is harmonic, we may also write the following instead of (5)

U= Reif? (z) + x (z)] --'J-ezt.
I

Thus, relationships (6), (7) will have the following form

(z)+ z_'(z---]+ _(z)= 2"re at-r _+¢;

2 ate at2_ (u + io) = _ (z) -- z,_' (z) -- _--_ + . _.
• c)z'

a==+ %u= 2 I_' (z) + _--r_)l -- 4etEt;

%u -- ax_ _- 2iOxy = 2 Iz?"(z) q-- _' (z)] -- 4 ate c_t
"T" " b'_"

These relationships enable us to solve the class of plane problems being

investigated in the case of nonstationary thermal regimes both for a plane and

for a generalized plane temperature field.

However, the formulation of the considerations presented above, pertain-

ing to the theoretical and applied value of the problem regarding distribution _

of temperature fields and stresses in bodies with foreign inclusions, requires

further generalization. This generalization may be done by defining the bound-

ary conditions more accurately, particularly the stresses of the thermal and
mechanical contact of solid bodies.

The formulation of conditions for an ideal contact assumes that the con-

tiguous bodies are divided by an ideal (mathematically) surface, and each of

the bodies is uniform up to the dividing surface. In actuality, a certain

transitional layer may be located between the bodies; the properties of this

layer may differ from the properties of the contiguous bodies.

In this connection, a formulation of the problem based on the following

computational model is advantageous. Assuming that the transitional layer

thickness is small as compared with other dimensions, we shall regard it as a

thin shell with definite physico-mathematical characteristics. Keeping these

characteristics constant and extending the shell thickness to zero, we obtain

a certain physical surface dividing the bodies with characteristic, definite

values of the physico-mechanical characteristics. The conditions which must

be satisfied on this surface by the quantities characterizing the physico-

mechanical state of the system will be called the conditions of physico-mech-
anical contact of the bodies under consideration.

We should note that this formulation of the problem corresponds, in parti-

cular, to the connection of bodies by means of artificial layers. For
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example, this pertains to systems of bodies which are connected by meansof
welded seams, stiffening ribs, etc.

Let us point out the derivation of the conditions of physico-mechanical
contact for the case whenonly mechanical and thermal processes occur in a
system of elastic bodies. For purposes of simplification, we shall disregard
the forces of inertia, and also the effect of thermoelastic dissipation --
i.e., we shall investigate the conditions of physico-mechanical contact for a
quasistatic temperature problem of elasticity theory.

With respect to the conditions of mechanical contact, as was already
noted, we may employ the results derived from the theory of shells, different
variations of which have been adequately developed. Weshall deal with the
problem of thermal contact, which has been studied to a lesser extent.
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Let us investigate a solid body containing a foreign inclusion. In accord-

ance with the computational model, we shall assume that the body and the in-

clusion are divided by a thin intermediate layer, on the surfaces S1 and S2 of

which there is ideal thermal contact with the inclusion and with the body,

respectively.

Let kI and k 2 be the principal curvatures of the layer middle surface, re-

ferred to the curvature lines. Employing this surface as the base surface, we

shall introduce an orthogonal mixed coordinate system (_, B, y) into the region

occupied by the layer. In order to determine the temperature t of the layer,

in accordance with the general thermal conductivity theory (Ref. 8), we obtain:

The equation of thermal balance

• =--cz.Z  ,p (8)

where H_ = A(I + kl_ ); H B = B(I + k2y) are the Lamg coefficients; A, B -- co-

efficients of the first quadratic form of the surface SO; c -- specific heat

per unit volume; T -- time);

Fourier equations

J.=XX.; J_=L_p; J_ _,,

relating the components J , JB J of the thermal flux vector to' y

ponents of the thermodynamic force vector
I at 1 at _. I

The boundary conditions

t----t,; _,

a =i, _'
t = t,; ).-_-- 0., on S,,

(9)

the com-

(i0)

(ii)

°

where tl, t2 -- temperature; %1' %2 -- thermoconductivity of the inclusion and

the layer, respectively; nl and n2 -- normals to the surfaces S1 and $2;
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Initial conditions

t----tofor • = 0. (12)

Taking the fact into account that the layer thickness 2h is small as

compared with other dimensions, and regarding it as a thin shell, we may

reduce the three-dimensional problem (Ref. 8-12) of the thermoconductivity

theory to a two-dimensional problem, based on the hypothesis of linear temp-

erature distribution over the layer thickness

t = T + 70. (13)

For this purpose, let us write the formation of entropy I per unit volume

as follows, in accordance with (9) (Ref. 3):

2 _ ------_ (Xz,q- X_ q- X_), (i4)

and also its increase

d_ = J.dX, + 4dXp + J+dXT (15)

Let us examine the quantity
h

°= Jl(I+ k,9 0 + k,_)Pd_o (16)

which represents the entropy in a shell computed per unit area of its middle

surface. It is also apparent that we have the following in the linear formula-
tion

h

do= _ (I+ k,_)0 + k,_)d_ dT. (17)

In accordance with (13), we obtain the following according to the formulas
(i0)

-- !+k,------_' ;+ k,7 ' (18)

where
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x,:---_-'O-_; x,=--y._; _,:_____.__; (19)
I

First substituting (18) into (14), (15), and the results obtained into

(16), (17), respectively, and disregarding terms klh , k2h as compared with unity

after integration, we obtain

°= -- _h(x_+x: + _D + -T-(g*+ [;); (20)

do : ! l dxl + I, dx, + L, d_, + La dE, + I, dO, (21)

where

h A

z,: .[ o + k,T):. ,+,= .[ (, + J, d_;

h h

I, =_J'.a (! +k,'_)J,d_; L,:_J'h(l +k,.f)J,d. G

It directly follows from (20), (21), and (19) that

(22)
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I, ='2),hx, = --2),h I • _'_;aTL_=--_2 ),hS_, = --_2 kh s i" "_f;

Iz --2),hx2 -------2),h I. aT r 2 2 ). s I 00• _; ,._=-- -_-Xh'% = -- T ..n "T" _"

Let us now rewrite equation (8) in the following form

o---;-+ o_ X H_H_ =

and let us integrate it over y from -h to h.

(23)

(24)
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Let us multiply this equation by ¥, and let us again perform integration

within_e same limits. As a result, we obtain the following, disregarding terms

of the order klhl, k2h as compared with unity after integration_ and considering

(23) faT 2 ,
_,AT + X[(-_I+--(-_I-]=--co._T +_Hh _-);

(25)

+ + (,+--,--- --
I aT

where X02Xh is thermoconductivity; c 0 = 2ch -- specific heat of the layer;
2h 1

r0 - X -- its thermal resistance; H = _(k I + k 2) -- average curvature, and

K = klk 2 -- Gaussian curvature of the layer middle surface;

(the plus and minus indices indicate that the quantities are taken in the case

7 =!h, correspondingly).

Integrating the initial condition (12) in a similar way, we obtain

where

.I
T = To; hO = Oo for z = 0,

h h

°,To =. _ to dl; ------ to_.dl. _

(27)

(28)

In addition, we obtain the following from (13)

T=}(l++t-); 0 ---- / (P -- t-).

Let us now omit T and 8 from (25), (27), (29), taking the boundary con-

ditions (ii) into account, and in the relationships obtained we find that

in the case h ÷ 0, X0, r0, cO are constants.

As a result, we obtain the desired conditions of thermal contact in the

following form

{_or,. { o,,] .o(t,+ t,) i_oA(t, + t,) + 2V._-_, T ""_. = _o--'E-- ;

iOr, _ Ot,] 12XoA (t, -- tl) + 6 )'10m'l -- "l "_2} -- _ (tt -- ti) = on So; (30)
=tta A_

= Co_ ; I
m

t, + t, = 2To; tl-- fl = to for z -----0.

(29)

(31)
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Conditions (30), (31) were obtained (Ref. 16, 17) by a different method,
and they were employed in (Ref. 5) to solve the plane problem of thermoelasti-
city for an infinite plate with an elastic circular disk. The influence of the
intermediate layer on the disturbance of the uniform thermal flux in the vicin-
ityof the spherical inclusion in an infinite body was studied in (Ref. 20), in
which the results obtianed in (Ref. 24) were generalized for a spherical cavity
with an insulated surface.

Equation (30) leads to different particular cases of the formulation of
boundary conditions_for _he thermoconductivity problem. For example, assuming
%1= %2= %' nl = -n2 = n, we obtain the conditions

_oA (h + G) + 2Xo (t_ t,) . o (t, + t_.= _o_, i (32)

XoA (ts-- G) + 6_o (t, + t_ mo. _ (t,-- t,) = Co_(t'_ t_.

which correspond to surface inclusion in a uniform body.

If we assume that the contact thermoconductivity %0 = 0, instead of (30),

we shall have
at, at, co a (t_ + t,).

XI_7 +x'_7,=Y o_ '

)'1 _St' -- ",_ an,at". r.2 (tl--t,) = c._'(t_ t') •

Also assuming the contact specific heat cO = 0, we obtain

_I_+- at,--__0;)., at, _ at. 2 t,).on, _'_ _7-- "'_ = _ (t_--

(33)

(34)

Combining and subtracting the last two relationships we obtain the con-
ditions

Oh ! (t,--G) = at, i ion. z,,. _. + _.. (t,- t,) = o,

The form of these conditions coincides with that of the conditions given in

(Ref. 26, 27).

_t 2

Omitting %2 _ from equations (30) and assuming tI = t, t2 = tc, we

obtain the Newton condition

at
x-_- + a (t --t_) .= O.

1
where _ =- is the absolute heat transfer coefficient determined as the

r 0

inverse value of the thermal resistance of the boundary layer.

Finally, in the case of the contact resistance r0 = _ we arrive at the

conditions of ideal thermal contact

Or1 Ot,

In conclusion, we would like to note that these conditions may be directly

employed in the case of a plane temperature field, if it is assumed that tI and
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t 2 are functions of only two three-dimensional coordinates, and if we set A =
22

- , where s is the arc length of the conjugate profile L0. For a genera-
_s 2

lized plane field, the corresponding conditions will be different due to heat

exchange on the end faces of the intermediate layer. If tI and t2 are the

averaged plate temperatures, then the following relationships must be fulfilled

on the profile L0 dividing the regions of plates made of different materials

which are combined at the joint by means of a thin intermediate layer having
the thickness 2_'

_ a,(t,+t,) ( at, _')---_--(t,+t,)= •o a---_--_- + 2 _,, -_- -- _._ -_

_ a (t, + t,) QTe;
----co _'f (35)

_o-a'(_', ', +6(_.,-_ " " at.'

= co°(t'_t-')_T$ .. • •

where _0 = _S; c O = cS; S = 4h_ is the area of transverse cross-section of the

intermediate layer; _0 = _c; _ = 4_ -- the external, circumfluous middle portkn
c I _c

of the profile for the layer transverse cross-section r0 = _ • _k ; %k -- the

portion of the profile of the layer transverse cross-section in which it makes

contact with the joined plates; %0± = 2%ih ; %0 = 2%2h.L

It is apparent that, with this formulation of the thermophysical contact

parameters, the conditions obtained may also be employed to study the tempera-

ture fields in plates with stiffening ribs. As a particular case, relation-

ships (35) follow from the corresponding general equations for plates and

shells which were obtained in (Ref. 2).
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If the plate edge is reinforced by a thin rod made of another material

having the same thickness 2h and the width 2@, in order to determine the gen-

eralized plane field, we shall have (Ref. 4) the following conditions of heat

exchange on the reinforced edge L 0

! o (36)

which are characterized by the four thermophysical rod parameters: thermal

resistance r0,thermal conductivity %0 , specific heat co , heat transfer _0"

Here we have 0c = dc_c; %0n = %0n = %n_k"

Setting _c = _0 in (36), we obtain the condition

+ +_.cro)An_._.__co___]t=acl(t__tc), (37)

where _ = _c + _k"

This condition may also be applied for plates whose edge is reinforced by
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a thin rod having an arbitrary cross-section, and £ then designates the outer,c
circumfluous middle portion of the profile for the rod transverse cross-section.

It maybe readily seen that the well known condition of the Newton heat
exchange for an unreinforced plate follows from (36), (7) for zero values of
all four thermophysical rod parameters.

i
Setting r c _ - 0 in (36), we obtain the following condition

C

_ =--, (38)

which coincides with the Newton condition for an unreinforced plate. In this

* plays the role of the heat ex-condition, the thermoresistance of the rod r k

change resistance r on the plate surface. We obtain the well known condition
c

* = 0.
of the first kind form (38) in the case rk
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i

EFFECT OF A DIFFUSION PROCESS ON THE STRESS CONCENTRATION

NEAR A CIRCULAR HOLE

_ Ya. S. Podstrigach. V. S. Pavlina / _ _'

(e'vov_  67-z 5 9.
The well known book by G. N. Savin I made a detailed investigation of

stress concentration around holes a_ viewed from the classical

elasticity theory. The study of stress concentration in a body representing

a solid solution when the activity of the diffusion process is quite great is

of significant importance. It may be assumed that the substance is redistri-

buted due to the influence of large stress gradients, and this redistribution

may lead to a change in the stress state of the body. We obtained a system of

differential equations reflecting the interrelationship between the processes

of deformation, diffusion, and thermoconductivity. This sytem of equations

enabled us to study the influence of diffusion produced by a nonuniform stress

state upon the change in the time of stress concentration around holes.
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This problem may be reduced to solving the following equations at a con-

stant temperature

ac f
DAc = _; (1)

AAU = 0; (2)

A_:E_ (3)

in the case of a boundary condition for the concentration in the following form

O_rad.c+O.grad_o'=--H (P--l_) (4)

and for stresses which are specifically defined on the boundary surface. Here

D = D - EBcDO; H -- mass exchange coefficient.c

Let us investigate an infinite body which represents a solid solution

having a constant concentration co with a circular, cylindrical cavity having

the radius R in the case of unidirectional tension at infinity by forces p.
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D
= T

R 2 '

we obtain

where c, o

Introducing the polar coordinates (r, e), the dimensionless time _i =

and applying the Laplace transformation to relationships (i), (4),

: c - Co, rr

@z I 0 1 0z) -_i -I- T . _ -t- -_= . _= c (p, O, s) -- _: (p, O, s) = O;
(5)

_)=0; c(oo, O,s)=O; aT (p, o,_) [op'_..=0;:;(p,o,
(6)

D_(P'°'oe s)l,,-, + O'°;(_'s)l,-, = 0'

are the Laplace transforms respectively of the quantities cI =

+ o0e. The boundary condition (6) corresponds to the absence

i
Savin, G.N. Kontsentratsiya napryazheniy okolo otverstiy (Stress Concentra-

tion Around Holes). Moscow-Leningrad, Gostekhixdat, 1951.
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of a diffusion flux of solute in the cavity.

The equations for determining the Laplace transform U, _ of the functions
U, @may be written as follows

T +-p._ _+-7._+-p. U (p,e,s)= O;i (7)

(m,0 ,_)ap + T _ + _" a_ _ (P,e, s)= _p_;,. _ (8)

and the stress representations may be deternl%ned by the following relationships
according to formulas (3.3)given in (Ref. 2):

- (I a I 0') - a'o,,= 7._+T,._ (0-_); o.=ap(0--_); (9)

(,0 ,0)• .. ("'= -p'_o T' (0-_).
The boundary conditions for the Stresses are as follows:

In the case p ÷

" ' P (l + cos20);=. = _-. • -;-
- l P _,::n2O;at8 = ....2 = (i0)

form

In the case p = 1

o,,=0; :re=0. (Ii)

A solution of equation (5) satisfying conditions (6) has the following

; (p,0, s) = AK=(p; _)cos2o,

where K2( p _ss) is the Bessel function.

in
We may select the functions U and _ which satisfy equations

the following form

0 = aop= + bo In p + (a_ = + a= + aap -=) cos 20;

Substituting

(9),we obtain

(12)

The unknown

p and A from the

quantity by means

(7) and (8) /221

rb

the values of the functions U and _ from (13)
_ b0

0,, 2ao + -_ -- (2a, + 4a=p -= + 6aap-') cos.20 +

_o (2_,+6_p-,)co_20-_A[_K,(pv';)+!.;- = _o-- _ +
(14b)

+.._v;K,(pV;)+Ko(_V_)]_o_2o,
o_s= (2al -- 2_=p"_-- 6_p -_) sin20 + (14c)

+ ._A[_K= (p I/s)2 (p }/s,] sin 20;+ _-_.; K, 1' =E_e.

constants a0, b0, al, a2, a3 may be determined in terms of

boundary conditions (i0) and (ii). Determining the following

of the first two relationships (14)

' L_-; -_] e' _AK= (p I/',_) cos.m

(13)

in relationship

(14a)
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and substituting
quantity

where

With allowance
(ii) yields

where

and J, Y are

its

for

we find the desired

(15)

value in the boundary condition (6),

4pD. "4De.

bz = De_ e_c_o ; bz = De_ epcDo. (16)

(15), the inverse Laplace transformation of expression

c (p, o, _,) co+ -_. cos2oe-- T- -- 2bill (p, _z) cos 29,

• , _ ;y,(_of.(t)- J.(Pof.(o].-"_,t
4:(P,',)--_-_ t:(o+I:(t) ' : -

t, U) ffi (b,-- :) J. (0-- 2t.r. (0, h (0 = (b, - _,)Y,(O -- _JY.(0'
Bessel functions.

(17)

where

and

and

of

Similarly, we may obtain the stresses influencing the body

__ 4 3p-') cos 20 2_b, _z) +

+ 24 (p,_,)l_o_2o- 2_b,p-,[24(1,_,)- _,=4 o,_,)+

1 _,)] cos 20;+ -_ !, (1,

o,,-- + + ,,,-
-- Is (I, %)I cos 20 -- 2"gbl [Is(p, _l) -- Is (p, _z) -- plt (p, _i)] cos 20;

Or, = -- _(I + 2p-s -- 3p-') sin 20 + 2"Ibz [Is (p, =z) --

a !. (1, _) +-- 2II (P, =z)] sin 20 -- 2-i,bap"s I= (1, =j) -- -p

+ _1,(1, _,)] sin 20,

Iz (p, _) = ! [ IY_ (pt) f, (0 -- J_ (pt) f, (t)l e-e'"dt.
" J et ll_ (0 + fl (t)i '

0

6 i [Yz (Pt) ft (t) -- Jz (P/)/'s (/)] ft.,, dt
la(P, 'ca) = "-g" eftZl_ (t) + f; (t)] "

0

For a stationary regime (_i ÷ _)' we have the following

(18a), (18b), (18c):

c (p, O)= CO+ b, e' '

the stresses do not depend on the solute concentration.

_i' the formulas obtained may be written approximately as

b, cos2O[_ I. 15"/T B " ]c (p, e, _) = c. + _/.-,_ u.. ,_) + T VT ' tP.*D ; I
VF L _ .L

o_. _-- P(I -- p-S) + _ (l -- 4p-S + 3p-') cos 26 + [

(18a)

(lSb)

(18c)

from formulas (17)

For small values

follows:

(19)
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where

-I- "_bip-1 [_- (I -- 2_) Bs (I, =l) q- V'_ BI (P,. =0] cos 20;

' l 23 _I)] COS20; ...-- "_ Bl (P, _0 -- "8 P-3/2Bs(P'

o_ = -- _- (I q- 2p_ -- 3p-')' sin 20 -I-

-I- "fb, --_---sin2°r'(l[_ --_)B=(I, 'h) +2._ B, (p, 'h)],

(20a)

(20b)

(20c)

'{Bl (P, "h)= _ erfc

+ _8O-_'h]erfc

-- exp - (p-- 1) q-

p--I
(P_)']--(_ + p-- l)eHc_ +

=,J erlc [2 i/'_,

Let us study the change with time of the solute concentration and the

stresses at the point P = i, 0 = _- and at the point which is symmetrical to it,
2

in which we obtain the maximum stress concentration from the solution of the

Kirsch problem. We have the following from formulas (17), (18a), (18b), (18c)

(.)c 1, _, _l =co 4bl?(bs--t'--4)e'-t'"dt
(21)

=[
/" "_o J t [1, ( )-I-/_, (0] (22)

x _ -- 4"fbl ? (bs -- tI) e"-t% dt

o,,0,-_,,,)=o_,+o:,=a__--_?,,t:,,)+_,(,,)"
However, for this same case we may obtain the following approximate ex-

pressions from (19) , (20a), (20b) , (20c)

( - )c 1,_, =, = co--8b, 1 --exp _-=, erfc _-1/'= l q- 4 V =l'
(23)

( * ) 8,_,{m[ /,9., .(_ _)1___1/_ (24)a. 1,_-,=_ ---3p-I-_- W l-exp_,F/'_')er'c V 8v,_V

All the formulas presented above are suitable for the case of plane de-
formation, if we assume

instead of bl,

, = 4pD_ , 4D_ " "'
b, D:-- * *; ha= * * ,; t*=E*_$. (25)E'pc D. D; --E'pcD;

b2_ Y.

We should point out that, since the concentration coefficient of linear

expansion Bc(B_) may be positive or negative depending on the type of solid

solution and D = - _ BcL, L>0, D - E_cDo>0 , the constant bl(b;) has
o O c

minus or plus sign, respectively, and the product Ybl(Y*b* ) is always

the

negative.

/223

204



As may be readily seen from formulas (16) and (25), the constant b2(b_) changes /224

from 0 to 4.

As follows from the approximate formulas (23) and (24), depending upon

whether 8c is smaller or larger than zero, in the most extended zones the solute

concentration increases or decreases with time, and the effective stresses in
both cases decrease.

I

The figure presents a graph show-

ing the change in the concentration

o(i) (_ I )80
stress o_e : with time;

ybl

this was calculated from a precise
formula (22) (curve i) and from an

approximate formula (24) (curve 2) in

the case b 2 = 3. The change in the

quantity o_0 computed according to

the precise formula (curve i) shows

that the concentration stresses first

increase, reach the largest value, then

slowly decrease, and strive to zero in

the case T ÷ _.
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PROPAGATIONOFELASTICWAVESALONGA CYLINDRICALCAVITYFILLED
WITHA CONDUCTINGFLUID

/225

-:I. T. Selezov_ /'2 ;

(Kiev) N 67 -- 7"_; 5 3 O .....

This article investiagtes the magnetohydroelasticity problem of axi_

ssn_netric waves in an elastic body-conductive liquid system. A cylindrical

cavity having a circular transverse cross-section, filled with a nonviscous,

compressible conductive liquid, exists in an elastic body having infinite di-

mensions. A uniform constant magnetic field is applied along the cavity axis.

It is assumed that the elastic body is magnetically and electrically neutral.

In essence, this system represents a wave guide having an unusual characteristic, l

This type of problem is important for geophysical research. I
Several articles (Ref. 7-11) have investigated steady magnetohydrodynamic

motion of liquid in channels with rigid walls, or without rigid walls. Several

of these articles have advanced definite assumptions regarding either the

strength component of the perturbed magnetic field or regarding the compress-

ibility of the conductive medium. This makes it possible to obtain the solution

containing Bessel functions. However, a more precise formulation of the problem

leads to an investigation of degenerate hypergeometric equations (Ref. 7).

/226

+

+ The notation is as following: H -- vector of the _agnetic field strength;

h -- vector of the perturbed magnetic field+strength; E -- vector of the elec-

tric field strength; j -- current density; v -- velocity vector of a liquid

particle; p -- liquid density; p -- liquid pressure; B -- magnetic permeability;

o -- electroconductivity; cb -- speed of light; co -- speed of sound in a non-

conductive liquid; t -- time; x -- axial coordinate; r -- radial coordinate;

r0 -- cavity radius; _ -- elastic scalar potential; _ -- modulus of elastic

vector potential; or -- radial stress; T -- shearing stress; R -- radial dis-

placement; y -- elastic medium density; v -- Poisson coefficient; c -- velo-
s

city of distortion wave in an elastic medium; c -- expansion wave velocity in

an elastic medium; a2 = 9H2 e
4_P0 square of the Alfv_n wave velocity; c -- phase

velocity; £ -- wavelength.

The dimensionless quantities are as follows:

= c--'t;(p',o'_) = _ (p,a,);R'-- _;(x*, ,*)= _(x. r)! t* ,.

_( = 2.v*= ¼i = H, e ' • l' ±. = •• =c_' ,,' _'

.. 0,=2,_; _- al.
"1 (A)

Disregarding displacement currents, mass forces, and viscosity, and

assuming that B = 1 and o = const., we may write the equations of magneto-

hydrodynamics (Ref. 5):

"! 7=o;
I (1)
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__/ aH divH=0;i
rot E - ¢b " _'T ; !

[

÷,_ ×
d; i -

P_-T = -- grad p + _- li x. HI;

0p "" "
o'7+ d_v(pv)= 0;

op .l op
_7=3 ._-.

(2)

(3)

(4)

(5)

(6)

+

H and v, if the nonlinear hydrodynamic terms are disregarded:

_-'-'.= ,-ot,: ×_]- _ rotrot,_;
o

grad divu "-t" 0'_" 1
0

o or, 4_po4" _[r°t _ x.ili.

Th+e system of equations (i) - (6) may be reduced to two vector equations for

The following assumptions will be advanced below:

+

I. A constant magnetic field having the strength H 0 is in operation

along the cavity axis.

(7)

(8)

-->- .._>.

2. The perturbed field h(x, r, t) is small as compared with H0:

3. The motion is axisymmetrical.

/227

4. The cavity walls are nonconductive. Therefore, the current density

component, which is normal to the profile, equals zero: Jrir[
r 0

0.

I_ we disregard small nonlinear terms and introduce the dimensionless

quantities according to formulas (A) under the assumptions advanced above_

equations (7) and (8) may be reduced to four scalar equations for hl, hr, v r

(9)

(iO)

(ii)

(.12)
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Let us investigate the case of infinite conductivity o = _. The system
(9) - (12) may then be reduced to one equation of the following type

• , E _,- T_=) a, ] o l o "(r*v; ) +"t- O_j a-_" " _ " rff_" i (13)

+ o-_, _7";i. ot"--z- v*- --c,_, ol',-- c_--; o-Vz--o" o, o;=0."

Representing all the desired functions in the following form

f(x*, r*, t*)= F(r*)e _(_x'-'a'). i (14)

we obtain the following from equation (13)

dzV (. o]_-f_ + -- = ,

where

B= _c;!J[\ s/ ' J (16)

L_,T/ o j

The problem under consideration may be obtained as a particular case for
A= 0.

/228

By the following substitution (Ref. 3)

I I .,

V = r*-Te T'r u (k, mm pr_), (17)

where

pt A t __4Bn; re=l; k=A--
2p '

equation (15) may be reduced to a degenerate hypergeometric Whittaker equation

4(pr*p_= (pr*p--4 (pr*)+4m n-I u.

The solution of equation (18) may be written in the form of the combined
Whittaker functions

u = C,M,. n, (pr*} + C=M,. -r,, (pr*). (19)

It may be assumed that the constant C2 equals zero based on the condition

that the solution is regular in the case r* + 0. Thus, the expression for

radial velocity has the following form

I ! At"

V = Cir*-T_" M,., (pr*). (20)

The pressure derivative with respect to time may be determined from (5)

and (6) :

ap" c,s _ [l a (r%,*) + (21)Ot-'-_=-- o I Lr* _ _ '

Determining the velocity v* from (12), substituting in (21), and represent-
x

ing the solution in the form (14), we obtain

• m[ _I ° _ .

__-] . dV / (22)
i=P<r*)=c_'P_ (_=/,_et;(r--l* V +_-"_. ' '!,
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Utilizing the following relationships (Ref. 4)

( )2,,,+ i M,.. (z)+
(23)

-I- 8(m + !) (2m + l)"

(2m+ l),-4k, 4m,-_kz-! M_. (z) (24)IGm(m + l)(2m + l) Mk' _'+i (Z) = 12m-- |)z n,

+ (2m + i)M,. ,._j (z).

we obtain the following from (22)

i_oP (r*) = c*s Po

_(c)'
l l

+2 M,.o
The axisymmetrical problem for an elastic medium with a cylindrical

cavity may be reduced to solving two wave equations (Ref. I):

l _ _ +a_ I a'-q,I
-J- 7-" o_ r' _'i : 7 " Ot-T (27)

for given boundary conditions on the cavity wall. ' The displacements and

stresses may be expressed in terms of the functions # and _ by means of the

well known formulas (Ref. I). The condition for the absence of shearing stress-

es on the cavity wall is:

----0 for • = r_. (28)

The second boundary condition expresses the relationship between elastic

and conductive media and follows from the fact that the dynamic rigidities of

the two media are equal on the boundary dividing them:

0p •
--0"] or. I (29)
--_-vr R" orr----t0,i

The solutions of equations (26) and (27) is written in terms of Macdonald

functions (Ref. i), and may be substituted in the expressions for radial dis-

placement R and radial stress Or, with allowance for the boundary condition

(28). The final formula in dimensionless quantities has the following form

|

- _#--c'_' . Ko --
_=s , ,c,, j,,+

/ .,(.[,-(&'D
I • k \c, / J

- I

_C, l . J .2
"+_'.

,[,-(&1".,P-\c, / J

![ 41/----4(I c*')' l .... .c*' " i +Ko(sli--c*' )

.... S(f_ c._'_ - _, (sil _ c.,13")Jj
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After substitution of the dimensionless quantities (A) and the dependences/230
(14), condition (29) assumes the following form

%* (r')l (31)i,_p{r') = c_ _. (r')l,.-tV (r*) r'-I

Substituting the expressions (20), (25) and (30) in (31), we obtain the

dispersion equation •connecting the phase velocity and the wavelength:

,[, (_.)(_,) • ,+--'-(_.)t_)l,) _
2_ 2= co m c s Tr, c.l'i__'i_ .,(_[,_(_.)(_.11)IL_- t - x_J x_1 j

, [,--/c°/S (_o)'1 [ I (c'lS(cl'l 7@ - _I _Tol j _[,-(_)'(_)']'
I I

,--[,/_'(_'l_ [' (_)'(g'FI. -x_1 _&-1,
6 . |

.l

•-_/x_l, /

o "l 2_ (g'-, _,"

(32)

The dispersion properties of the system under consideration may be

determined by the following four characteristic parameters: Co, v, P0, m.
Y

If we set m = 0 (there is no magnetic field), then the Whittaker functions

degenerate into Bessel functions, and A = k = 0, and equation (32) describes

wave dispersion in the case of a nonconductive liquid (Ref. l). Let us study

equation (32) in the two limiting cases of long and short waves.

In the case of long waves, the arguments of the Macdonald and Whittaker

functions are small, and the expansion of these functions may be employed for

small z (Ref. 6): q
z In_._:,°_-;K._._='_in_.,(_);

l z I | ÷m
M_.. (z)= z_'+'e-Tll + i+2m z+

(_+m-.)(÷+m-,),
• + ¢_+2m}fZ+2,n) . • "_"t- .. "l"

In this case, equation (32) has one root corresponding to waves propagated /231

at a velocity which is smaller than the speed of sound in a nonconductive

liquid. The approximate velocity may be determined by the following expression

c_' ! = +,M,
_'/ "" I+/Co_'_ (33)

__[_2
where the small parameter c \g,] is introduced and
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M

('
49--

(34)

_2

According to formula (33), the

value of c__ may be determined by the

cO

method of successive approximations.

The zero approximation holds in the case

= 0. Substituting this value in the

right hand side, we may determine the

first approximation, etc.

Let us study the sign of M. It

may be determined by the sign of the

expression in the brackets. The value

of m, at which M = 0, may be determined

by the following formula under the con-

c(_0)2

m
dition _ i +----_:

L -- _/J

- C
The figure shows the dependence of m on-- , corresponding to formula

c 0
(35). It may be seen that for small _ the quantity M < 0 and the magnetic

field decrease the phase velocity (the region located under the curve), and for

large m,M > 0, and the magnetic field increases the phase velocity (the region
located above the curve).

In the case of short waves, the arguments of the Whittaker and Macdonald

functions are larger, and the asymptotic representations of these functions may /232

be employed (Ref. 2, 6):

! =

' (36)

.. ., [ k+- F --,.' (37)
Mk, m (Z) = z-*eT r C2m+ I) 1 + - + • • • •

When there is no magnetic field (m = 0), formula (32) may be reduced to

an equation describing Rayleigh wave propagation. If we confine ourselves to
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the case c < Cs,Wemay obtain the following approximate relationship from the
dispersion equation (32) by meansof formulas (36) and (37)

Formula (38) has a more formal meaning, since the magnetohydrodynamic
model is not employed for short waves.

If the cavity wall is absolutely rigid, then the displacement R* + 0, and
therefore V(r*) Ir* = i ÷ 0, from which we have the lower root

I--_'_" (39)

For small m, we obtain the Alfv_n wave velocity c = a; for large m we

obtain the speed of sound c = co . In the case of arbitrary momentum, the

solution may found by superposition of waves having the form (14).
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/I/',.,7 "_

A CASE OF DYNAMIC STRESSES IN AN UNBOUNDED ELASTIC SPACE WITH /233

A CYLINDRICAL CAVITY

" M. M. Sidlyar ; ,', _-

(Kiev) " _ " _. ,- "7 1

T i n e N67 -- £'4_
his artic e i v stigates the dynamic problem of s_esses in-unbounded /

space with a circular cylindrical cavity having the radius r0 = I. These __
stresses are produced due to the influence of force sources which change harmon-

ically with time and which are uniformly distributed in two planes which are

parallel to the cylinder axis x = ± $($ > i). In particular, the stress state

around the cavity is analyzed.

In an unbounded elastic medium with a cylindrical cavity haying the radius

r0 = i, let plane force sources be in operation in the case x = ! $($ > i).

The strength of these sources changes according to a harmonic law. Plane

elastic waves are produced, due to the influence of the force sources in the

medium. The cylindrical cavity will disturb the fundamental stress field

which is produced due to propagation of elastic waves.

Fundamental stress field. In the case of the given system of sources,

the displacement and stress will only depend on the variables x and t.

The equation for determining the displacements u is (Ref. 5)

aSu . I _u I
ox, c,o_, +_q(x, t)=0, (1)

where c is the velocity of elastic wave propagation,

_, t)= q°7{_(x--_)--__ + _)}e_'.q (2)

Here q0 is a constant characterizing the strength of the force sources; m --

oscillation frequency; 6 -- Dirac function (Ref. 2).

We may select the solution of equation (i) in the following form

u (x. t) = uo (_ e'_. i (3)

For u0(x), we then obtain the following value

uo(x)=--q°e-"k_sink_; x<_, k=_. (4)

The fundamental stress is

where

o, = ";,e''t A (t_) e i-' cos kx, (5)

A (to)= _,--t-2_. ,, ,,-,k_ (6)
"_ _1o_ ----- qoe''ik_.

Disturbance stresses. The additional stresses which are produced due

to the disturbance of the fundamental state by the cavity, may be conveniently

determined by means of the potentials of longitudinal and transverse waves

and _,which satisfy equations having the following form (Ref. 3)

/234
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l o'l,=O (v 1,2),VV,- c'v " dt-_- (7)

where

In our case, we have

tl = ?," t, = _,

(8)

Conditions on the cavity surface will be
-- r

_') + o_') = O; I • ---- 1 (9)
-._m+ _) =" O,I -

and conditions of radiation, correspondingly will be

(or, ikr)lim7, = O; lira V7_ 7 +__., =0.
(lO)

r-.O r-.O

The upper index i in (9) pertains to the fundamental stress state, and 2
pertains to the disturbed stress state.

The fundamental stress state may be determined by expression (5). We may

determine the disturbances according to formulas given (Ref. 3), which assume

the following form with allowance for periodicity of the phenomenon and equa-
tion (7) : ~

:'"o, " og)
-_ _'+2_ -_r'oo _ ; (11)

;;_ = _ _(x+ _)g,,_- .
J

Correspondingly, the amplitudes of the stress tensor components for the

fundamental state in a polar coordinate system are (Ref. 4)

o,,,-,- ";.(,+oo, o);I
~_')_,,= -- _ % mn 20; _ (12)

• I- !;_') = _ o. (I -- cos 20).

Let us employ the following series for cos kx (Ref. i):

COSkX = _ a_ (kr)cos2n0, (13)
rlmO

where

:: (kr) = Jo (kr), a_ (kr) = (--l)"J,. (kr), (14)

and J2n(kr) is the Bessel function of the first kind. Knowing (5), we have

(u,) _.oa_. (kr) cos 2nO. (15)A

Then (12) assume the following form

I
A (_.) E as,, (kr_ cos 2he; (16)_(/) = -f

/235
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where

Conditions

(7) in

the

w - i
i

I A (oo)E b_ (kr) sin 2n9,!7,q'= -7. .-0

ao (kO = J0(kr) -- 12. (kr); 1
a2.(kr)= (--I)"-'{J2.-,(kr)--J2.(kr)+ J2.+_(kr)l;ib2.(kr)= (--I)"-I{J_-2(kr)--J2.+2(kr)l,

(9) may be written as follows:

_(2) + -_ A (to) a_ (k) cos 2n0 = 0;
.m 0 • .

-- _ _ t_) _ b2. (k)sin 2n0 ---- O.
elm|

Taking (18) into account, we shall try to

the form of the following series:

_n = _o ?. cos 2n0;

find the solution of

With allowance for (7), we then obtain the following equations

determining the functions _n and @n:

d'f, !' dr, [el 4n'_
dr-T+ 7" _7 + • ' ---;r] f, = 0 (v = 1, 2);

_Cl . I
I

f, = _.; f, = _.. I
Taking (ii) into consideration, we obtain conditions (18) in the

form :

IA(_) (kr) O;+ _- a2. ----

_' [2n d_n 2n ) !•_-_ _. + 2__ _ ,, _.. + -_,4(o_)b_ (kr) O.

We shall select the solutions of this system, satisfying

problem, in the form of Hankel functions of the second kind (Ref.

?.=An(to)_r(,)(®-r) • _(_ ),.2. _, ; _. = B.(co)H • "i

We may determine the constants from (21) in the following form:

(-)
I A (to)a_ F., (,0)-- b,. _ F., (o,)

A. (to) = -- _ f_, (¢.)F,,. (.,) -- F,,. (,_) f,,, (,o)

(°) (-)
B. (¢o)= -- _ A (to) F., (_o)F., (.,)-- F., (.,)F., (*)"

" t(,)el) (2)" b) )/ (I)' .

where

(16)

(17)

(18)

equations

(19)

for

(20)

following

(21)

the conditions of

1)

(22)

(23)

(24)
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F., (=) = : =_"rn(_) 2H"d" (24)

Then, substituting (23) consecutively in (22), (19) and (21), we may

determine the stresses o0, Or, rr0.

Stresses on the oavity sv_faoe. The stress amplitudes on the cavity

surface may be determined according to the following formula_

;e= ;_" + _" (r=.l). (25)

However, we have

and then

or, taking (12) into

where

and

the

On the cavity

Substituting

o0= -20. + w)7:_ +7_ )--, =

+ + + ;f')-(;;!' +

account, we obtain

o,=--2(_+_)_+o., o.

surface _ = 0, and consequently,
r

o,=--20,+w)_?+a,, (r=D.
(15) and (19) and taking into account

o8= e "t _ ,/_ (_o)cos 2nO,
nmo

(22_ we obtain

(26)

(27)

(28)

d2. (¢o)= -- 2 (X+ p) _... ,,,. ,,,_ _ + A (,o)a_ (_),_'

we may determine a2n(k ) and A (_) from (14) and (23) respectively.n '

(29)

Case of lor_ waves. If the wavelength is large as compared with

cavity size -- i.e., k = _ << 1 -- when calculating the stress we may
C

employ expansion of Bessel functions in series in powers of the small argument
(Ref. I).

Retaining terms

obtain the following

of the second order of smallness with respect to k, we

expression for stress on the cavity surface:

Re (od = -- qo (1 -- 2 cos 20) cos.w t.-- T +

i_2, i

t
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4 ¸ •

where

_ _'I w__in ;o -- -I- Inc,

@_ -}-_---_ _--b2 1 + In_---In_ ,

_2----_ (1+ _) ' in2, .f =0,11593.

If k ÷ 0, we obtain the well known solution of G. Kirsch for:the static case

from (30).

(31)
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CONCENTRATIONOFMOMENTSAT HOLESIN THEBENDINGOFTHIN PLATES /239
WITH ALLOWANCE FOR PHYSICAL NONLINEARITY

/ IN67" _453 _
_" A. V. Stepanov _ / }

(Kiev) _- "-

Hooke's law lies at the basis of classical (linear) elasticity theory,

which considers small deformations. This law assumes a linear dependence

between stresses and deformations. However, there is a nonlinear dependence

between stresses and deformations in many materials employed in technology

(polymers, alloys, non-ferrous metals, etc.), even in the region of small de-

formations. Thus, Hooke's law is replaced by a nonlinear elasticity law.

If the geometric relationships of classical elasticity theory remain in force,

we arrive at one of the variations of the general elasticity theory -- the so-

called physically nonlinear law. The monograph by G. Kauderer (Ref. 2) pre-

sents the fundamental laws and hypotheses for physically nonlinear bodies. In

this monograph, on the basis of experimental research the nonlinear elasticity

law for the metals indicated above is represented in the following form:

T = 3Kx (%)O0+ 0% (1)

where T is the stress tensor; DO, D' -- the spherical tensor and the deforma-

tion deviator, respectively; X(_0) , y(_g) -- extension and displacement fun-

ctions whose behavior may be established experimentally, just like the moduli

of shear G and the volumetric contraction K; sO, 40 -- the average extension

and intensity of the shear deformation, respectively, which may be expressed
by the well known formulas

| •

eo= (E,+ e,+

2 V2 s 2

I I I I

+ + +

This article investigates the problem of the bending of thin plates for

small deflection, whose material follows a nonlinear law of elasticity, and

small deformations. A solution is provided for the problem of the moment

concentration in a circular plate which is loaded axysymmetrically, and also

in a plate which is weakened by a circular hole, under conditions of

pure cylindrical bending. The influence of the external loading and the

elastic properties of the material upon the moment concentration coefficient

is investigated.

/240

Fundamental bending equations of thin plates and method of solution. The

article (Ref. 6) investigated the problem of the bending of thin plates for

small deflections, whose material follows a nonlinear elasticity law (Ref. 2),

and small deformations. In this study, we obtained the fundamental relation-

ships for the bending of thin plates.

The equation for the bending of such plates in cylindrical coordinates

(r, _, z) has the following form
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_-W,_) + (2)o)(+o
2 F I __ I -- ,

where w(r, _) is the deflection of points in the middle plane of the plate;

q(r, _) -- continuous load which is perpendicular to the middle plane;

_0 -- Poisson coefficient; D -- cylindrical rigidity, which is related to

the plate thickness h and the moduli K and G by the following formula

1 3K+ G _,h=
D=-_. 3--K-'__'G....

and A designates the Laplace operator.

type

The functions F(r, _) and _(r, _) represent integrals of the following

F (r, ?) = _- % I --, (,,, +_)z'dz; (3)
2
h

m

Sh S | .

12 7 (_o)" (to,_ o) zldz;
* (r, ?) ---- _-. ! --, ('o'+:) (4)

2

l 3KI(.o)-- 2_ (_,_)
. (.o. '_o5= -f. 3KZ,o) + c, (+_ '

and the following formulas hold for average extension and the square of the

shear deformation intensity

! I -- 2"_o zAw;
s°------'3 " l--_o

_t 1 IB8 t I " 1 t ,(Wr+ r ,,Ijc"

w !3( r _..T w,)S} z..+-_
where

+ 1; vs = 2_o 1.
vl = (l -- _e)' (1 -- _o)'

From this point, the subscripts indicate the derivatives with respect to

r and _ of the functions obtained.

The following expressions are obtained for the moments Mr, M_ and Mr_

' 'M*=--D(I--v°)[F(TWr+Tiw*v)+_wrr] ; .i

Mr,=__D(l__vo)(F__e_,(lwr. lte._). "

(5)

/241

219



In order to obtain the expression for the intersection force -- for exam_
ple, Qr -- instead of M M_ and M wemust substitute their values in ther' r_
expression

oM, m, _+± oM_ _
Q,=-_-, +-;--- __ .--_-

and must perform the corresponding operations.

We shall confine ourselves to studying the case when there is a small '

deviation of the nonlinear elasticity law from Hooke's law. For many materials,

the functions of extension and shear then have the following form

z (%)'= I;_(_I)= l- e,_ (g,_ <<l), (6)

where g2 is an elastic constant which may be determined experimentally. Taking

(6) into account, we obtain the following expression for the function v(g0, _):

Expanding the right hand side in powers of g2, and taking into account the

term which is linear with respect to g2 in the first approximation (g2_ _ <<i),

we obtain

Let us introduce this value in the expressions 1 and

i - _(_0' _)

_(_0' _)
which are included in the integrals (3). Expanding these

1 - _(E0, _)

expressions in series and truncating them at terms which are linear with respect

to g2' we obtain

I

i--,(,,, _ '--'oL +T' ,o(l__,o ) $2tOJ"
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Let us now calculate the integrals (3), expanding them in series and re-

taining only terms which are linear with respect to g2 in these series. For

the functions F(r, _) and _(r, _), we then obtain the expressions

where _ =

F(r, ?) = 1--_,

" _ (r, ?),O(r, _) = l-,,

g2K is a small parameter which characterizes the deviation

(3K + G) G2

from the linear elasticity law; the functions s(r, _) and t(r, _) have the
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following form
1

"_ (1 +,,)h"

I _,,)+ 3 (_ I w _'l.

( , )](l -- ,_o)' O, , I wi + +
t (r. _) = 5 0 "__ "' v, w,, + F¢ 7"w,,

I 3_ I •

Introducing these expressions in (2), we obtain the equation for the plate

bending in the following form:

/_&w-- kL lwi ----_; (7)

and

We shall

powers of the

4):

where w(0) (r,

higher

thus L_] has the form

• " [ _ 0

' '
2 s l

The formulas for the bending moments (5) will have the following form

__ I wM.:

I I W
l_ = --O {voWrr + (+Wr'_-_'fW'_,)--)" [s(lwr +"_ _,)+.

-_- tFarr ] (l -- 'o) } .

,l_r, D{+ l l "---_-- Wr_---_W,--}_ [{S--t)(IWr,--'_W,)]}{I--vO).

try to find the solution of equation (7) by expanding it in

small parameter I which is contained in this equation (Ref. I,
i

m (r, ?, ),) = w(o_ (r, _) + _._(n (r, _) + }.*w{'}(r, ?) + ....
(9)

_), w(1)(r, _), ... are the functions of the zero, first, and

approximat ions.
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,

for

for

Substituting w(r, _, X) in (7) and setting the coefficients equal to zero

identical powers of %, we obtain an infinite system of biharmonic equations

determining the functions w(n)(r, _) (n = 0, i, 2, ...).

We obtain the following equation for the function w(0)(r, _)

_A_o) =_,1 (I0)

which corresponds to the bending of thin plates, for whose material Hooke's

law is valid.
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For the function of the first approximation w (i), we obtain the following
equation

A_a+,<') = L[_°)). _
; (ii)

Let us confine ourselves to the approximations of the zero and first

orders. The solution of the thin plate bending problem in the first approxima-

tions may be reduced to integrating equations (i0), (ii) under the correspond-

ing boundary conditions.

Circular plate which is axisy_netrically loaded. Let us investigate a

circular plate with a hinge-supported outer edge subjected to theJmoment M = M
r

which is distributed uniformly over the outer profile. We shall assume that

the inner profile is free. Let us employ a and b to designate the outer and

inner radii of the plate. The functions which may be employed in solving this

problem do not depend on the coordinate _.

for

The function w(0) may be found from equation (i0) (in the case q -- 0)

the followin_ boundary conditions

W (0} : 0; --D (Wrr'_-r.(O) _ w(O)_rj = M for r : a;

--D( "<°'_r'+'7_° )w_o) 0; --Dd---Awm)=0forr=b'dr

According to the linear theory of thin plate bending, we have

too,b, In _ Ma' b') (a' -- r').u_°) = -- D (1 -- _o)(a' -- b') -F 2D (1 + _o)(a' -- . .

If the function w(0) is known, in accordance with equation (ii) we may

write a differential equation for the first approximating function:

( l+'_o l b') [864_,b,M, --2 -- + 97+- .AAwc') = 5 (l + _o) (a' -- bg' Da+ _ " r' (12)

Thus, the following boundary conditions must be satisfied:

. w(o)\= o; <'' = (1-,o) °}+ t<m I
for r : a

and

.(o)_ (13). (t) _o _ ,) o <o)_]_t<.o)._F_jfor r b;'_" + 7" w, = (I -- _o) s( )w. " =

_(0) .(01 (01 Wr

Aw(') = (1 -- Vo) s(o) Aw <°)+ _, w,, + t, "7 " j

We may represent the solution of equation (12) in the form of the sum of

the particular solution of this equation and the general solution of the

corresponding homogeneous equation AAw (I)= 0. The integration constants of

this equation may be found from the condition (13).

The function _i) will thus have the following form:

In order to calculate the bending moment M_ in the first approximation,
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the following expression is obtained

M, _ -- O I'°W_ + _,"F " + "7i _v! +

As is known from the linear theory of thin plate bending (Ref. 5), M_ >

> Mr, and reaches the largest value on the inner profile. Thus, the concen-

tration coefficient is

-----_-r"_ 1 •
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In our case, the expression for M_ on the profile is as follows:

2k=M {1 _[4k=--(k=+ l)SJMsk_M_ = _,_ l _'N'---_ --'" J'
and the concentration coefficient

(_)r--b 2k_ {l 5414k4--(k'-J- l)'J Ms)_(b ----= _ -- S(_'--l),h, .... / V" _)'i

(15)

will depend on the external loading, the mechanical properties of the material,

and the plate thinkness.

Figure 1 presents a graph showing the change in the concentration coeffici-

ent of the moment M_ over the inner profile as a function of the external
3

moment M for separate materials in the case k = _, h = 1 cm. Curve 1 represents

copper with the characteristics K = 1.33.107 n/cm2; G = 0.47.107 n/cm2; g2 =

= 7.26"106; % = 0.98.10 -7 cm4/n 2. Curve 2 is for pure copper with the charac-

teristics K = 1.37.107 _/cm 2, G = 0.46"107 n/cm2; g2 = 0"18"106; % = 0"255"10-8

cm4/n 2 .

As may be seen from the graph, the reduction in the moment concentration

coefficient around the hole, which is frequently observed, may be explained

by the behavior of the material which is nonlinearly elastic.

\

I

Figure 1

3,2

3,0

"i
\

dyne cm
era

Pure cylindrical bending of a

thin plate weakened by a circular hole.

Let us investigate a rectangular thin

plate which is weakened by a circular

hole having the radius a, under con-

ditions of pure cylindrical bending.

We shall assume that the hole radius

is small as compared with the plate

dimensions (length and width), and the

hole is so small that it has no in-

fluence upon the stress state over the

external plate profile. Under these

assumptions, this plate may be
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conditionally regarded as an infinite plate which is weakenedby a circular
hole.

The function w(0) may be found from equation (I0), when q = 0

AAw_°_= O,

under the following boundary conditions:

[ (o) /l m) !_(o)]
--u[w,, + _o[TW, + ,_,,] =o; ]

• ^ ¢0)

--[(_)' (0)] (0)'_ (__ ;_W_;$ .._. 2W_:_p .(0) .(0)\+;o.j+,. 0
for • = a.

(or ! (o) 1 (o) s t/f.

--DWrr-_-VO(7"Wr "Jc'_W..)] = MCOS ,;

--D[(lw4°}+lw_)+VoW_°}]=Msin'_,; or r=_.

• 1 (0) i (o) ! .
-- D(T w., -- _w, ) : ---_M sin27

represents a solution of this problem in the linear formulation (Ref. 3).

may be written in the following form

• w(°)(r, ?)=Czr'+C, lnr +(C,r' +C, +%)cos2,. !

and

where

According

w(1)(r, _)

where

C* -------4(I___D; C. = --2(I___D;

M " C,=-- Mat . C6= M_
4 (I --_o) D' 2 (3+ _o)D' 4 (3 + _o)D"

we obtain the following differential equation for

+ + + +
(16)
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Ae=_

m_,c ' 15_' 1);A, = (I - _o)(3+ _o)(_o + + 63_o +
324a4c,,,,, s

A, = _ _z_vo- 2vo + 5); A, = 2_a'c3+_,(13v:-- 40v, + 19);
1944aSc ,_ s

A, = 583203+_o(i--_o)','c., A, = __ tOVo-- 2vo + 13);.

804a_c ' 372vo2- 350Vo 81);A, = (I--_o)(3+ _o)'(30_o+ +

• "" _ 1296(I -- "o)='c (73_,_-F 86Vo-- I l); ' '
A7 ----- (3_-_o)'

17496 (1 -- '%)a TM
11664 (1 -- _o) a'c (7Vno__ 22Vo + 7); A_ = • 5c;

(3+ _' (3+ _'

A,o = _(13 + 7_o); Az, = 7776(11--_O)aSc;.

- 15552_0a'c • i
A,_ = --19440 (1-- ,o) a'c; A,,= 3+_, '

/247

224



AI6

A. 2916 (1 -- _o)'aSc. A]6 -- 3888 (1 -- %) C;
= 3+ _o , =

arm s
216a'c (61vl Jr 98vo -- 119); c =
3 Jr"_o • 5 (1 Jr- _o) (3 -_-%) h4D i

t)

Thus, the following boundary conditions must be satisfied:

,, + o_7 -t- 7iw_,) =(1 --Vo) s(O)w_,°)-t- t(o) w_°) + ..aw,vjj,

O) ( w(1) m(l)_o / ¢,) z _(,)_ 3d') _';_ + t0 ---" -_--"| =_=" +;_' J+ -_ + ,,j r,--.J

_=,,+ v-)--_ +-_] +

_ (o) do)\ /w(o) dON
.._ _(0) __ aUr__._.l..t.. ___) _]_ 3 r_(O)._Jrr(O)_].. tr(O) _-7"r _]_._) _}.v_

,e_(o) w!o_
+ 2 (s$°)- ,(o)_/ ',"''_F_ _)I f°rr=a;

• / ! (') ! "(')_ (1 -- _o)[s (°)'J°) / 1 (o) ! .(o)'t'l_'+,oLT_, +_,,7= -,, +t,O,tT= +_-,,/j.
.'i

r (o)t ] (o)_ ] w(o)_+ t¢o)w_)]+ + =_(,- ,0)[, + ,,j
for r=_co,-

7| _U,,"(|)-'_ | [El,-(|) = (1 --'0) (s(O)- t(O))/t7 | _)r,(O)--'_,] __(0)_/.

Here the functions s (0) and t(0) equal the corresponding functions
in which w (0) is substituted instead of w.

(17)

s and

We may write the solution of equation (16) in the form of the sum of the

particular solution for this equation and the general solution of the corres-

ponding homogeneous equation AAw(1) = 0. We may find the integration constants

of this equation from condition (17).

The function W(I) may be expressed as follows

a!

=(') (r, ?) = Rot' -I- R, Inr -t- -_ + -_ -t- -_ -I- _ +

. Jr- R, -]- Rzr' + 7_ Jr % _ "1-F, -t- p -i- _ -t- cos 2_ Jr"

+ ==o+ =,,-_- + _ + _ + =_=-_- + -_ + cos 4 T +

+ =_ + 7_ + -_ + cos6?,...

where

Az. Az . As . A, .
=z=_, ===_6, =s=230"--4, %=6400'

Ai A, A, A, .
_ = ----" g'B ----" -- ' _? " 0_848' 384' = i_' =_'

A, . A,o. An. Ass.
%= 13440' az°=l-_' =u ="_', =z=----- ]_,

A,s. A_4 . Az,, As_._
azs----_, =_4=4_, =_s=i152; ¢zz'=640'
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and R0, RI, R2, R3, R4, R5, R6, R7, R8 maybe determined from the boundary
conditions (17).

The bending momentM_ in the first approximation may be calculated accord-
ing to the following formula

f _o) /I ¢o) I.¢o)_ [M, = -- D[vow,, + trW , + _w_,] +'), tv°w_i -F

" ,., :'°" _,.>}+tTw. +-j,,)+ <, .

As is known from linear theory (Ref. 5), the bending moment M_ reaches

the largest value on the hole profile at the points _ = +_ _ , and the con-

centration coefficient at these points is

- i

In our case, the expression for the bending moment M_ on the profile at
1

the points _ = + -- _ is
-- 2

Mr = M s+ 3,,o/I_ (8683v_ -J-
r 9M'_

72308v_ +
L 35o(3 + ,,o)=(S+ 3",o).h4 (18)

+ 266 050_o' + 222 612_,o+ 45867)],

and the concentration coefficient at these points

Mv 5 + 3%[ 1 9MiX
M = _ L- 3_ (3 + ',d' (5 + 3,,_ h* (8683_,I Jr- 72308v0= +

+ 206050_ + 222612v o + 5867 -

depends, as is known, on the external loading, the mechanical properties of

the material, and the plate thickness.

Figure 2 presents a graph showing the change in the concentration coef-

ficient of the moment M_ over the inner profile at the points _ = + __ as a
-- 2

function of the external moment for separate materials in the case h = 1 cm.

Curve 1 is for copper with the following characteristics

K = 1.33 • 10Tnlc._; O = 0.47 - 107nlc.,i; g= = 7.26 • I0';

). = 0,98 • 10-T c_4/n";

and curve 2 is for pure copper with the characteristics

K = 1,37 10'n/c_i; O = 0.46 I0' z/c,_; g= =0,18 10';

k = 0,255 • 10-' c.,t/n=;

Curve 3 is for open-hearth steel with the characteristics

K = 1,821 • 10' n/c_d.
G = 0,870 10' r,./c.*tl;

g==0,085 • lOS; ).=0,032 • 10 -s c._*_ I.
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_dyne_cm

Figure 3 shows a diagram of the bending moment M_ on the hole for a material

with the following characteristics

K = 1,33_'107Wc_2; O = 0,47.10r_c_; k = 0,98.10-,c_n 2

and in the case M = 200 n-cm/cm, h = 1 cm, where the solid line designates the

diagram of M_ compiled on the basis of the linear theory, and the dashed line

designates M_ for our problem. The reduction in the concentration coefficient

of the bending moment M_ may be explained by the behavior of the material

which is nonlinearly elastic. As may be seen from the diagram of the bending

moment M_, there is an insignificant increase in the bending moment on the

hole profile at the points _ = 0, _ = _. This is confirmed by a decrease in

the bending moment M_ at the dangerous locations due to the existence of

sections which are loaded to a lesser extent.
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/STRESS CONCENTRATION NEAR CAVITIES IN AN INCOMPRESSIBLE MATERIAL /

/ G. S. Taras'yev A L. A. Tolokonnikov ! _.

Crula) N67-24533
General considerations. In previous articles (Ref. 1,-4), the formulation

of the problem regarding plane deformations of an incompressible material has

related the fundamental stresses (oi, a2) with the octahedral normal stresses

(E), the octahedral shearing stresses (_), and the stress functions (U) by the

following formulas

,el = 4plUz,U_;

Jl

f= (,,)d,;,

(1)

o , p

where p is the characteristic value of the stress; )i -- deformation intensity.

we may select the law governing the change in the form as follows

= Gth_, 9 = 2 ]/'_,,5 _I; (2)

and we may represent the stress function by the series

U = oU q- 1U_ q- 'U_ nu .. ; (3)

Let us confine ourselves to calculating the first two terms of the series.

As was shown in (Ref. 4), if the region of the complex variable plane z = x I +

+ ix 2, which is occupied by a body, is mapped onto the exterior of a unit

circle of a plane by means of the following function

z= R_+ _ c,_'% (4)
_ 01

then the problem may be reduced to the well known problem of successively

determining the biharmonic functions according to the boundary values on the

region profile and at infinity.

The biharmonic function 0U may be calculated according to the Goursat

formula in terms of the two analytical functions (Ref. 2)

0U = Re@_o-I-=_. (5)

The function IU satisfies (Ref. i) the following equation

l(ouz_oUZ;; oUz,znU_). (6)_J_; =--(0U_pU_)_--_

Employing (5), we may find the particular solution (6):

I -
,u* = T [_o_o- (_'_; + wo)@_'_;+ _o)], (7)

where
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=_=v-_. (8)

We may express the biharmonic function 1U - 1U* by means of the two new

analytical functions

IU = Re pU* + _, + z_. (9)

Let us now turn back to the formulation of the boundary conditions. The

following must hold at the point on the profile with the outer normal (cos a,

sin _) where there are no shearing or normal stresses (Ref. 2)

dU_
-_ = -- _fe--,

where ds is an element of arc length of the profile.

We thus obtain the following conditions

e--_--_-=--ikFpk;

oF = 0; 'F = °U_4_.

(io)

Employing the boundary conditions

d,
ds = -- ie_-_";-i.; a : tat, (ii)

let us formulate the boundary conditions for the analytical functions

f?k (o) + Z (o) o' (o) _; (a) + W, (o) =--2*U; (o) -- 2 F (_) (12)

(k=0, I, ... ).

The calculation of the right hand parts of (12) may be simplified by the
boundary conditions

_o = -- _o -- Z°'?0; (13)
,r; = e-2;.(o%' + _'_;)_ _o,(o'?;),.

_,,(o)+ z (o)o'(o)t;, (o)+ ,I', (o)= g, (a); go= o;
1 , , , I {' _,-,,ado

g, = -- T to _o + _'_;) (_o+ _oe_'_)-- -_ j (°%0 + o _o, -_.
(14)

We thus obtain /253

Employing the well known methods presented in (Ref. 2, 3), we may write

the analytical functions in the following form in terms of conditions at

infinity

_, = a,_ + _, _k = b,_ + _,

" , *" (kU%__ kU:f) ' (15)ak = -- R ( U,i-- U_ ), b, = --2fl

where _*'K _k are functions which are holomorphic outside of a unit circle.

Since we are interested in stresses at the profile points, and not the

stresses on the profile surfaces, we may calculate the second fundamental

stress ot at the profile points according to the following formula

_t = 2_ = p _ot q- 1otp), " (16)
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where

% = 4 V _ (_U_ + oU,.'U_i).

Employing (5), (9) , (13), we obtain

oat = 4 I/'1-_ Re¢'?o;' " (17)
" ] =

% = I/'I--_ Re [4_p_ Jr ?oa' (o'_o)'] Jr --f %,.

Thus, it is sufficient to compute the boundary values _0 and _i in order

to determine the first two approximations of the concentration coefficients.

Let us investigate an infinitely extended body which has a cavity in the

form of profile mapped onto the exterior of a unit arc by means of (4). The

x3-axis is directed along the cavity axis; therefore, the stress state in the
state

x I, x2-plane is studied. The stress/at infinity is assumed to be given in the

form of a compressed, uniformly distributed load having the intensity 2i_.5 pq,

forming the angle 0 with the x2-axis. We must determine the stress distri-

bution around the surface of the cavity which is free of stress.

According to the fundamental stresses given at infinity

a_ = O; a_ =--21/_pq (18)

we may calculate the invariant quantities:

i '
• "=pq; =--V'-_,5pq; _" = - _.ln (1 - F=q=). (19)

We thus obtain the formulation of the conditions at infinity for the
stress function

I

°U_ =--_q !
(20)

2oU.'.= _q_2,, 'U.". = 0.... ,

, ! |
'U_ = --T q ....

Employing (15) and (20), we obtain

$ I

ao=--; bo=2ao_'; e=e'_'°; a_--_,

The holomorphic portions of the function _k are determined below for
particular cases.
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Elliptical cavity. In this case, we have the following from (4) (Ref. 2)

( _) a-4-b, a--b (22).z=--R _+ ; R-i-, re=a+----6,

where a and b are the semimajor and semiminor axes of the ellipse.

The boundary conditions (14) may be reduced to the following form

* 1 m+a'_ . --a_(o I m+='___?=, (o) -iL 7" 17Z"m'_"i _J= _o) -f- _--'_)---- -_- "_'" T----"m'=] "l'Sl.

(23)
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Employing the method of _uskhelishvili, we obtain

_ (¢ = -- ak g c + _i gk _'-_-c"
1

In the case k = 0 the classical solution is obtained (Ref. 2)

_o =a (¢ mi-_ 2,_C /'

and the correcting component may be determined by the function

(24)

(25)

?s=-_ - +2t 1 ,'+m,. C
(26)

(,+ m),Inc- V_]
+ =V_',c+V_J" ..

Formula (16) is obtained for transverse stress at the profile points,
where we must set

4ao ! + 2m -- m' :1:2 cos _.Oat _ ---- .
R 1-- 2m cosPA-_- mS '

I

4ao.
'w = "_- i"2 :F 16m "8m' + 4m= + 6m= :t: 4mS+

,. q- (_6 + 16m _ 22m=.i: 10m* -- 4m=) Cos2t +
q- (--4 -l- 4m -- 12m= :_ 4ms -t- 4m* cos40 + (4m + 2m=)cos6t] X

The superscript corresponds to 0 = 0; the subscript corresponds to 0 = _-
2 "

The figure presents the calculated stresses at the profile points of an

elliptical cavity in the case m = 0.2 and _ = 0.5. The dashed line designates

the stresses calculated according to the classical formulas. The computational

results point to a decrease in the classical concentration coefficient, amount-

ing to 12%. In particular, in the case m = 0 the well known result (Ref. 4)

is obtained for a circular cavity.
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Cavity which is almost square.

Developing the well known results of

G. N. Savin (Ref. 3), we may set

• I

We may calculate _0' _1' and we

obtain the following for the case 0 =
0

12 i ! 1 )_Po=ao r.--T- _-+_- -_ ;

a; [ 2 1 1 i 265 C"_i=_ ¢+y-T+_._--_._+
_s

1 + 2¢, + T ".

Formula (16) may be employed for the stress, 0o t and io t may be

(28)

computed,
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and the stress values at individual points of the profile are as follows:

Angle, Degree

0
15
3O
35
4O
45

S_ress Angle, Degree Stress

--i,48i--0,21_ 50 --1,00q-7,59_
--I,70--0,31[_ 55 0,27-[-4,97i L
--2,70--- 1,941_ -" 60 0,71-J-! ,93_

--3,37--5,07p. 75 0,84-J--O,46p
--3,86---8,95_ 90 0,41-J-0,3_
--3,(X).--l,51p

Similar computations were performed for a triangular and rectangular

cavity.
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7

BENDING OF REINFORCED PLATES _,_

-'V. I. Tul'chiy J / _

(Nezhin)
N67-24534

The articles (Ref. i, 2, 5-9) investigated the problem of reinforcing

plates with thin elastic rings, where the ring is regarded as a plate or as a

solid fiber having the elastic characteristics of the reinforcing ring.
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In the latter case, the actual profile of the Junction is identified

with the ring axis, which cannot be achieved many times in engineering tech-

nology.

Let us introduce the fundamental boundary relationships for the theory of

reinforced plate bending, and let us discuss the above assumptions

Isotropio plate. Let the edge of a bounded, or unbounded, isotropic

plate having the thickness h be reinforced by an isotropic ring having a vari-

able transverse cross-section, one of whose main inertia axes lies in the

middle plane of the plate. We shall employ the term transverse cross-section

to designate the cross-section which is orthogonal to the profile of the

junction L.

Assuming that the middle plane is the x0y-plane, we shall locate

the origin at an arbitrary point on the plate, if it does have any holes, or

in the middle.of one of the holes if they do exist. Along L, we shall intro-

duce a mobil_ coordinate system (nT) which is determined by the unit vector
relative to T and by the unit vector of the normal n which is directed toward

the plate exterior.

Without restricting the generality of the discussion, we shall assume that

the ring is not influenced by the external stresses, and we shall regard it as an

infinitely small element separated by two transverse cross-sections. Employing

the generally accepted (Ref. 5) complex potentials _(z), _(z) and disregarding

the ring axial deformation, we obtain the following boundary relationships from /257

the condition of elastic equilibrium for the separated element and from the

condition that the corresponding deformation components of the plate and the

ring are equal along L,

• b

• b

(1)

[_" (z) + _' (z)l i + [_' (z) + _' (z)] i = N _ N, 1 -

--_ -g. ,
where

II 8 (0) = -_d(M_ + ill2) -- i (M_ + il'l_).
(3)
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Here M2 and H2 are the bending m_ents and torque which are in operation
in the ring transverse cross-section; b -- ring width; p -- radius of curvature
of profile L; _ and D -- Poisson coefficient and plate cylindrical rigidity;

_z i = _-f ; ds -- arc differential along L; e -- angle at which theZ=_s '
vector _ intersects the 0 -axis; B and y -- angle of torsion and bending anglex
of the ring; and CI -- arbitrary real constant.

_en deriving relationship (2), and from.this point on, we assumethat
the dlfferentlal of the rlng axlal llne ds 0 d8

On the basis of the well know relationships of Clebsch-Kirchhoff (Ref. 4),
the right hand sides of the boundary conditions (i), (2) are interrelated by
the differential relationship

+ (.-D i .

where the ring rigidity in bending is replaced by its rigidity in torsion by

means of the relationship A = nC.

By way of an example, investigating the case of an infinite copper plate

with a circular hole having the radius R reinforced by a steel ring having a

constant transverse cross-section (height of the ring h I ffi1.5, h =1.5 cm and

R - b = i0 cm), we arrive at the conclusion that the solution to this problem

which was obtained previously (Ref. 7, 8) may only be employed in the case
i b

_! _, where _ = 2(R - b) "

Let us introduce into the investigation the concept of a cylindrical

stopper, which will designate the particular case when the ring having a

rectangular transverse cross-section degenerates into a rod in which h I _ b

1.2hl,and h _ h I _ 1.2h.

Let us assume that the plate and the ring are made of one and the same

material (copper). Assuming that b = hi, h I = h, in the case of cylindrical

bending by the moments Mx(_)= M in the most dangerous cross-section (8 = _) ,

we find that the following moments are in operation over the junction profile

in the plate

Ms = 0,98M; M p =--0,08; Hp, = 0. (5)

It is clear from (5) that the plate under consideration functions like

a solid plate. Consequently, the stopper model which we introduced takes into

account the fundamental physical laws which are characteristic for problems

of this type.
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By way of an example, let us discuss the case when a steel stopper in

which b = h I and hI = l.lh is soldered into the copper plate.
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Cylindrical bending of an infinite plate. If the plate is bent by the

moments Mx(_) = M, then the bending moments and the torque, which are in

operation in the plate over the junction profile, have the values shown in

Table i.

Ratio

TABLE i

e_ Degree

• • 5_c z

Mo

0,345 0,349 6.381 0,430

M e
-_- 1,600 1.539 i,091 0,406

Mpe

-0,450 -0.428 -o_

I
7z 8* "| z

0,4530,4720,4840.489

0,074 --0,196--0,373 I--0,4_"

0.079 0.228 0,349 0,428 0,456

Twisting of an infinite plate. If a plate is twisted by the moment Hxy(_)=

= H, then the bending moments and the torque, which are in operation in the

plate over the junction profile, have the values shown in Table 2.

Thus, as may be seen from these examples, the stopper represents a

concentrator, and the moment M becomes a reference moment.
P

Aniostropic plate with an elliptical hole. Let us investigate an infinite

anisotropic plate having the thickness 2h, at each point of which there is a

plane of elastic symmetry which is parallel to the x0y-plane.

Ratio

A49

M

Mp

H

Hp9

-//

TABLE 2

e,Degree

0 x x _ 5x 7z 8_ •

oI-o:: i_o.,,,o.,,,_o.o0 I-o.o,,o
0 0.696 1,762 " 2.034 2,0()3 1.308 " 0.696 ,0

0,911 0.856 0.455 0 --0.158 I--0.698 I--0.856 l--O.gll
I | |

Let us assume that the hole weakening the plate is reinforced by a thin

elastic ring having a constant transverse cross-section and A = C. Without

restricting the generality of the discussion, we shall assume that the ring is

not influenced by external stresses, and the stress state of the plate is uni-

_rm at infinity.

As is known (Ref. 8), the boundary conditions of the formulated problem

may be written in the following form
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B_t_' (z,) + B,t,_' (z,) + B#,_,' (zO + B,t2_ r' (z,) +

+ R,¢ (zO+ R,V (z,)+ R,_(zl---T+R,_r(z,)= O:

dz.

where zj = x + tajy, _j =___lds

the constants Bk, _ (k = i,

constants of the plate (Ref.

follows (Ref. 5): _

where H 0, H I, H 3

(6)

, _j -- complex parameters of the plate (j = i, 2);

2, 3, 4) may be expressed by means of the elastic

8), and the functions _(Zl) and _(z2) are as

¢ (zl) = Hoz, W ¢0 (z0; "@(Z') " (Ht + ills) z, + IFo (z,), (7)

are the given constants and _0(Zl), T0(z2) have the expansions

I !

Directing the Ox-axis along the semimajor axis of the ellipse, employing

the relationship

z----o_(_) = R(_ + _), O_<m<l (9)

we may map the plate region onto the exterior of a unit circle y, in which
= _.

On the basis of (9), we have the following for points on the junction
profile

and, taking (8),

,° is,r,;o)+ B,_,_(o)l---_ tS_,,_ + 8,_j + I,,/(o)I tR,?o(o)+

'+ R=% (o) + Ra?o (a) + R_go (o)l = -_ IKIB, + K, B41 --

-- io (K,Bi + K_B,I -- [ w' (o) I [(KIR, + KtR,) o +

+_t(R,R,+ K,R,)]

R
zi--''_[(l.--iPi)(°+-_)+(l +iPl)(ma++)]; (10)

(10) into account, we may rewrite (6) in the following form

where

K, = R._, II--ith + m(l + it_,)l, K,
R (Ht + iHI)

-- = 2 X

x tl -- it,, + m (1 + ip,)l,

and the functions $0(o) = _ akO-k , _0(e) = 7, a o -k satisfy the condition
1 1

¢ (z0-- I%o-__0(o); • (z,)= I%o+ ¢0(o).

m 2
Assuming that I_'1 -- R .[1 - 7(° + o-2)1,

method of N. I. Muskhelishv±li from

(ii)

(12)

(13)

we obtain the following by the

(Ii) and the equation connected with it
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-- xiR_a,+ R,a,_+ (R,a_+ R,aD _ + (R_, + R,_;) _-'] =

= [R (K_Rs d- K2R,) -- i (-K_B3 + K'-',B,) -- ), (K,RL+ K2R2)I _-* --

-- _ [KIR, -- _,R,] _-';

I_(_'+ _-')"m i_,_0(_)+ R,_0(_)]- iIN,_(_)+ _,_ (_)l_.

• --).[K_R, + K,R,] _-'.

(14)

(15)

By comparing the coefficients for identical powers of the variables in

(14), (15) we obtain an infinite system, from which we may readily find all

al2n+l (n = i, 2, ...), employing the well known constants a I, a_,a2n+l,

- -_al, a . In determining these quantities, we may make use of the fact that the

functions _0(_ ) and _0(_ ) are analytical outside of y, i.e.,

lima, = 0; lima_ = O. (16)

Since, for the given degree of computational accuracy, the index £ always

exists, which makes it possible to set the following, without disturbing the

accuracy,

_=0 (i=2.+1_l), Ia,= O, a_ (17)

combining the ad_oint equations with (17), we may thus determine the coeffici- /261

ents al, a_, al' a_ .

, aI (n = i, 2, ) may be expressed
Similarily the coefficients a2n+l ' 2n+2 "'"

by means of a 2 aI a2 _i ; in order to determine these quantities, we must
' 2' ' 2

set m = 2n + 2 in condition (17).

The functions _(Zl) , _(z2) have now been found with the determination of

_0(_), _0(_) according to (13), and the solution of the problem under consider-

ation is concluded.

where

For the particular case of the problem when m = 0, we obtain (Ref. 9)

_o (_) = a,_-*; % (_) = a_-', i (18)

1
a,= T {[(RR,--iB,)--K,+K, (RR, -- iB,)](i_,-- RR,) --

a; = _ ',_(R_-,-- _,) r, + _, (_', -- _,)] (i_, -- _,) --

i_----[(iB,-- RR,) (iB--,-- RR,) --(iB,--RR,) (i-B,-- RR,)] 4=0.

(19)

(20)

(21)
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Table 3 presents the values of the momentsMx, My, Hxy for high quality

veneer, and the Ox-axis is directed along the core fibers, m = 0; Mx(_) = M;
My(_) = Hxy(_) = O, and the reinforcing ring is copper with a height of hI =
= 2.2h and a width of b = 1.86hI. The angle e is read off from the Ox-axis
counterclockwise.

Ratio

M

My

M

Hxy

M

m

18

• 1.085 1,155

0,034 o,om

TABLE 3

0_ Degree

1,374 ,I_83 1.353. 1.298., 1,162 0,991

-o,m5 -o,04z -0,057 I-5,070 -o,084 _,091

--0,i73--0,107 0,010 0,048 0,090 0.134 i

I

Comparing the data given in Table 3 with the computational results for the

same plate, but with a non-reinforced hole (Ref. 3), we find that the ring

reduces the stress conccentration coefficient in the zone of the hole by a
factor greater than two.
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"; A METHODOFDETERMININGTHESTRESSCONCENTRATIONAT "NODALPOINTS"

" A. G. Ugodchikov _'" /;,J

Very little research has been devoted to the problem of-the stress field

perturbation around holes or external chamfers. The most detailed examination

has been made of the plane problem of elasticity theory concerning stress

concentration in an elastic medium around the exterior of a curve L (Ref. 5).

It may be assumed that the solution of this problem does not entail any

particular difficulties, since sufficiently effective methods have been develop-

ed (Ref. 6, i0) to formulate the function mapping a circle onto the exterior of

the given curve L. Much greater difficulties arise when dealing with the

problem of stress concentration around holes in an infinite region reinforced

by elastic rings, the problem of stress concentration in the case of doubly-

connected regions, the problem with mixed boundary conditions, the elasto-

plastic problem, etc.

/263

The Structural Mechanics Department of Gor'kiy Institute of Structural

Engineers has recently devoted a great deal of research to stress concentration

in elements of engineering constructions, and has solved many numerical examples

[see the summary in (Ref. 7), and also see Trudy Gor'kovskogo Inzhenerno-

Stroitel'noy Instituta im. V.P. Chkalova, No. 39, 1961 and No. 44, 1963, 1964].

Other research has been devoted to such problems as the following:

i. Torsion and bending of box-like welded and curved profiles.

2. Torsion and bending of orthotropic rods with doubly-connected trans-

verse cross-section.

3. Stress concentration around holes and external chamfers in compressed

compounds.

4. Stress concentration around small holes of the observational type in

semi-infinite blocks and around chamfers on the outer boundary.

5. Stress concentration in the teeth of toothed wheels. /264

The method of electromodeling of conformal mappings (Ref. 8, 9) was

employed in these studies to formulate the function z = m(_), conformal

mapping the circle I_I < i [circular ring] onto the given simply-connected

[doubly-connected] region. Electronic computers were employed to overcome the
difficulties entailed in the calculations.

We have significantly changed the method of formulating the conforma]

mapping functions (Ref. 6). Interpolation Lagrange polynomials in the complex

region lie at the basis of the analytical section, instead of trigonometric

polynomials which approximate only the real portion of the boundary value of

the auxiliary function u + iv = _ .
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The initial studies performed by I. I. Serebryakov have shownthat the
formulation of mapping functions, by meansof electromodeling and Lagrange inter-
polation polynomials, has signficant advantages in solving the problems of
elasticity theory. At the "intermediate" points the deviations of the given
boundary L Srdthe boundary L', corresponding to the formulated function z =
mn(_), are thus smaller and -- which is the essential point -- "oscillations"

of the stress curves, caused by local deviations in the radii of the boundary
curvatures L and L', practically disappear.

Wecannot deal with this problem in greater detail here, since the purpose
of this article is to investigate another problem.

The development of research on the plane problem of elasticity theory
shows that methods based on employing the complex variable functions and the
method of N. I. Muskhelishvili (Ref. 3) are most effective in studying the
stress concentration. However, these methods cannot be successfully applied
in every case to solve the applied problems. In particular, great difficulties
are encountered in solving mixed problems for doubly-connected regions with
composite boundaries, etc.

The method of finite differences(and several of its modifications) has
been extensively used in recent years. This method makes it possible to
determine satisfactorily the stress state, but it leaves the problem open
regarding stress concentration at nodal points with a given radius of curvature-
around outer chamfers and inner junctions at the hole boundary.

Weshall assumethat the method of finite differences (Ref. i) or p-trans-
formations (Ref. 4) maybe employed to solve the plane problem for an elastic
mediumoccupying a certain region S in the plane z = x + iy. A portion of
the boundary of this region -- curve L -- has a "nodal" point with a given
transitional form b from section a to section c (Figure i). Curve L may be
both the boundary of the hole, and the outer boundary of the region. Weshall
also assumethat the boundary conditions are uniform on the section b and on
the ends of the sections a and c which are adjacent to it. Weshall divide a
portion of the region S -- region SI in the vicinity of the "nodal" point --

of the section b by the curve L. The boundary LI of the simply-connected
region will consist of a section of the boundary L --section b and the adjacent
ends of sections a and c -- and the boundary L2 lying within the region S.

The boundary conditions at L are knownfrom the formulation of the problem,
and the boundary conditions at L2 maybe approximately determined by the method

of finite differences. If we select the boundary L2 sufficiently far from the
"nodal" point -- section b -- then the magnitude of the radius of curvature
will not influence the boundary conditions at L2.

As a result, we obtain the first (or second) fundamental problem: to
determine the stress state in an elastic mediumoccupying the simply -connected
region S in the plane z with boundary LI, at which the external stresses are
given (or displacements).

/265
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Figure I

As is well known, the solution of
this problem maybe reduced to determin-
ing the function z = m(_) conformally
mapping the circle I_ I < i onto the
region SI, and then to finding the func-
tions _(_) and _(_) which are regular in
the region of a unit circle and which
satisfy the following condition at

= 1
o(o) :(1)

(o)-

Here o = ei0 is the boundary value of

= pei0; f(o) -- the function given

on y.

For the first fundamental problem, we have

t(o)= ! (×°+ (2)

and for the second fundamental problem we have

f(a)=--2_(U o+iv_,, i (3)

where X , Y are the components of the external (at LI) stresses; u0, v0 -- the
n

displacement components on LI; n = 1 for the first fundamental problem; q =

= -x for the second fundamental problem, where x is the elastic constant intro-

duced by G. V. Kolosov.
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In the case when the mapping function z = m(_) has the form of a polynomial

z = _n(_) , the complex potentials _(_) and _(_) may be determined, as is known,

in closed form by the method of N. I. Muskhelishvili (Ref. 3).

In the case under consideration, the solution will have certain singularit-

ies. In the first place, the form and location of the ends of the section

boundary L2 can be selected arbitrarily, which considerably facilitates the

formulation of the mapping function Zmn(_), and sometimes the calculation of

the functions (2), (3).

In the second place, the functions f(o) cannot be determined analytically

from the solution in finite differences: only the values of the function (3)are

known at the nodes of the grid, if the displacement problem is solved, or

the values Ox, Oy, _xy at the nodes of the grid, if the stress problem is

solved. Therefore, both in the case of the first fundamental problem and in

the case of the second fundamental problem, it is necessary to formulate the

interpolation polynomial in a complex form fn(_), which would coincide with the

value of the function f(o) at the given points (interpolation nodes).
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If we employ the27.points M.3of the boundary LI, corresponding to _ = _j =
= eiOj where O. = (j = i, 2, m) the interpolation nodes, then, ] m---] ..., , as
the coefficients of the interpolation polynomial

m

-f-I

f,,(o)=E A,,e (4)
m

l -.-_-- ,

may be determined from the expression

I "m
A, =-_ E tle'_& (5)

J" I

where f'3 = f(Oj) is the value of the function f(o) at the interpolation nodes

= _j.

If the initial problem is solved for displacements, then the value of the

function (3) at the points

zi=%,(e'11) (j=l, ... , m) ! (6)
i

is obtained by simple interpolation of the known values of the function (3) at

the nodes of the grid.

If the initial problem is solved for stresses, in order to determine the /267

function (2) at the interpolation nodes, it is necessary to replace the integral:
(2) by the finite sum

h *_" _'-" (x,- x,_,)- "--- _ _,--v,-0 +
,l|

+ i _ 2 _'- Y'-') - '_ (_,- x,_,)2

where o (_) o (_) _(_)
x ' y ' xy are the stress values at the points z = zj

determined by interpolation over the values of these quantities at the grid
nodes.

We should note that an increase in functions (2) or (7) when passing

around the contour L 1 would have to equal zero (principal vector equals zero),

and the coefficients Ak of the function (4) which are found must satisfy the

following equation (principal moment equals zero)

where Ck(k = i, 2, ..., n) are the coefficients of the polynomial z = _n(_),

p -- larger of the quantities _ - i or n.
2

By way of an example, let us study the stress concentration around a
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"right angle", when the radius of curvature r = _ H = h. The solution of the
6

problem in finite differences was taken from the book by L. I. Dyatlovitskiy

(Ref. 2, Figure 61, 62).

The boundary L I of the region S is plotted in Figure 2. Figure 3 shows a

graph of the stress o e at points of the radial transition boundary.

In particular, at the dangerous point max °0 = 2.403q. For purposes of

comparison, we shall write the values of max °0 presented in the monograph

(Ref. 2): max ae = 2.204q -- for a large grid employing the formula of Brass;

max °0 = 2.220q -- for a grid with a non uniform step.
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_SOLUTIONOFSEVERALPROBLEMSFORDOUBLYCONNECTEDREGIONSWITH
CONTIGUOUSCIRCULARBOUNDARIESi_

Yu. A. Ustinov '" _ '_
(Rostov na Don_ N67-24536 -

/270

This report presents the results derived from solving certain problems

for doubly-connected regions with circular boundaries. The solutions presented %

in the literature for the problems investigated below are not valid when the //_-

boundaries of the region are located close to each other. A method given in

(Ref. 2) is used to formulate valid solutions.

Extension of an eccentric ring by two concentrated forces. Let us assume

that we must determine the stress state of an eccentric ring pulled along the

line of symmetry by two concentrated forces applied from the outer profile.

The inner ring radius will be designated by rl, the outer ring radius -- by

r2, the thickness of the connector -- by h, and we shall ass_ne that the in-

tensity of each force equals P (see the figure).

The study (Ref. 6) investigated this problem by means of bipolar coordinates

and the Fourier method. However, the result obtained in this study is not

valid, when the ratio D = h/r I is small.

In order to formulate a valid solution, we shall employ the method

advanced in (Ref. 2). For this purpose, we shall relate the region S, occupied

by the ring, to the bipolar coordinate system e, 8 (Ref. 3). We shall assume

that e = al on the inner profile, and e = e2 on the outer profile.

Employing the general solution (Ref. 3) of G. Jeffery, we obtain

g_ = _o + _,, i (i)

where # is the Airy stress function;

p ch=, {2_ch, (ch _-- cos p) +
@o = 2= sh E(sh'az+ sh'_2) (2)

+ cosp[shz(2k-- I) + chEsh2_ z-she]I; "

I
P ch_, _ !(xk)e,ik_

Q

= (x_- '9A (x_)'

k÷O

f (._) = (x' -- _') sh E sh _,¢sh x sh L,c + _' (mx ch x -t-
-F ch e sh x) [ch ),e sh kx -- (x/Q sh _.t ch L¢],

,x (x) = sh*x -- mSx';

g = a -_ (ch = -- cos [t) (0 -.< X < 1, -- = _:p < _).

(3)

(4)

(5)

(6)
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We may determine the parameters al' _2' a by the following relationships

sh'-_ = 2(_--I)' (7)
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_2

shl T ----.--

rp

(i = ,,/,,,

"_ = h/rO, sh=t=a/rl, ,

LX

sh % = a/rz.

(7)

Solution (3) is not valid for two

reasons. In the first place, due to the

singularities on the outer profile, the

series (3) converges nonuniformly in

the ring region, and it even diverges

at the points where the forces are

applied. This may be readily eliminated

(Ref. 6) by isolating the solution for

the disk without a hole, whose radius

coincides with the outer circle radius,

and which is subjected to the influence

of the same concentrated forces. In the

second place, the convergence of the

series depends essentially on the magni-

tude of the parameter e which in its

turn depends on q, in particular. There-

fore, even a solution which is trans-

formed by this method is poorly suited

for calculations in the case of small c.

Let us now transform the series (3) according to the formulas given in

(Ref. 2), after which we obtain

=. 1. + )+_. (8)
Here

[ - ( , )]¢_o) P ), sh e sh ).E -- (m + .oh _) _.ch.Xt -- h)'---2 •= ,_' (m' -- 1)

P "# f(x)d'* -
= -- ,,-7J (x,- ,,),, (x)dx (? P/O;

eta) _ im E f (z,)cos z,_ exp (i_,l,)! ---- A' (tk) [ 1-- exp (i_za,&)J"
. J,

(9)

(zo)

(Zl)

In formula (Ii), zk are complex zeros of A(z) lying in the first fourth

of the plane z = x + iy (Ref. i).

The solution (8) - (ii) is valid for the interval 6 E (-_, _). In order

have a solution in the vicinity of 6 = _, we must replace 6 by 6' = 6 -_ in

formulas (I0), (ii). This substitution is permissible, since the function {i

has a period equalling _, as follows from (3).

Determining the stress field by means of formulas (8) - (ii), we should

note that the field is syn_netrical with respect to the cross-sections 6 = 0

and 6 = _. In view of this fact, when studying this field, it is sufficient

for us to limit ourselves to the segments 6, 6'E [0, _/2]. Therefore, if we

take the fact into account that Imz k _0 4.212-0.0338e 2 (k = i, 2, ...), in
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case of e _ i we may disregard the function _12)£ and the stresses corres-the

ponding to it. As may be seen, the validity of relationships (9), (i0) does

not depend on e.

We may obtain comparatively simple formulas for a numerical analysis of

stress. By way of an example, we shall present the computational formulas for

o B on the inner ring circle.

For 0 < 8 <___/2, we have

P(chal- cos_)[ 2 cha, ..... _'n ]
Op---- _---_ [sh,(sh_a,+shSai)(cntsn=l-f-snt#.os_) mi:l _-Fj. _ (12)

In the case 0 <___ < 0.4, we have
I

P =.(4m/e) [0,411 (1 -- 0,210e') Jr 8,599_os (1 -- 0,0913, s) -- _ (13)

-- i0,41_ 4 (1 + 0,0291e s) + 14,08_s], i

and in the case 0.4 < _ < _/2e

i ___ 4_mT[2!(chtsin,--_m) ¢-b,V[(1,086 Jr 0,0103_ s) sin al? -- I

-- (0;203 + 0,0847t') cos a,?] + e -b,_ [(1,037 + 0,0054_ _) sin as? -- '

-- (0,1225 + 0,0455E z) cos a=_] --e -b.v [(1,022 + 0,0034e =) sin as_ --
(14)

-- (0,0883 + 0,0312_')cosa',?]| ; a_ = 2,251 + 0,181hS;

a s = 2,769 + 0,1729_'; as = 3,103 + 0,1703_s; b,= 4,212 - 0,03385es;

b s =. 7,498 -- 0,02042effi; bs = [0,712 -- 0,01472¢ s.

The formulas for o B in the case 0 _ 8' _ _/2 may be obtained by replacing

by _' = 8'/e in (13), (14).

Calculations based on the formulas obtained point to the strong stress

concentration in the vicinity of the connector. Thus, for a ring with the

parameters y = 2 and n = 0.09 °B(_l' _) = 14.4.

o8(_i, O)

Let us now study the behavior of _8 in the case h ÷ 0 (we shall assume

that rI and r2 are specified). The following relationships follow from (7)

k, + o = k,V% (k,= ,, (15)
---[--

In addition, if we introduce the polar angle 8, just as in the figure,

we find that in the case 8_ [0, _ - 6] the following asymptotic equations hold

k,_ tg 0/2 + O (_'I_), ch _ -- cos _ = k_ _ 0 (_,1,). (16)
= I+c_0--

In the case h ÷ 0, the constant 6 may be chosen arbitrarily small. We

should note that 8 = _ _ is independent of h in the case _ = ! _.

By means of relationships (12) - (16) we may readily establish the form
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of oB -- of the principal term oB. For 0 < e < _ - 6, we have
* P_o_-'lt . 2kz (2k, -- kz) 6k, i

_ ----_rz (1 + cos O) Ao = , ,' k,.q-k, (kz--k,)"l (17)
I

The latter relationship shows that in the case n ÷ 0 o B ÷ =, having the

order n-i/2 on the given segment.

In the vicinity of e = _, o B also increases indefinitely, but has another

order with respect to _. Thus, at the point e = _ we have

, 2P_z_--s/= 2k= 6
ap -I A, = (18)

-- m', ' " k, (k,' + k_)' k, (kz "r k=)="

Formulas (17), (18) once more point to the strong stress concentration in

the vicinity of the connector when its thickness is comparatively small.

A more detailed analysis of all the components of the stress tensor in-

dicates that in the case h ÷ 0,o B increases indefinitely in every region S

(including the boundaries), and o increases indefinitely only at the inner

points of S, and the shearing stresses strive to zero everywhere.

In conclusion, we would like to note that formulas (i), (2), (8) - (ii)

contain, as a particular case, the solution of the problem for a halfplane

with a circular hole, when a concentrated force is applied to its rectilinear

boundary above the connector. The solution of this problem is obtained by a

limiting transition in the case _2 ÷ 0.

Stress concentration in a halfplane and a plane with circular holes. Two

particular problems are investigated: (i) extension of a halfplane with a

circular hole; (2) extension of a plane with two equal circular holes. The

solution of the first problem was first obtained by G. Jeffery (Ref. 4) in

trigonometric series. However, his solution contained an inaccuracy, which

was corrected by R. Mindlin (Ref. 5). The solution of the second problem also

in the form of Fourier series (Ref. i, 3) belongs to Ch. Ling. These solutions

are not valid, if _ = h/r is small (h -- connector thickness, r -- hole radius).

In order to formulate valid solutions, the trigonometric series were

transformed according to the formulas in (Ref. 2). In order to calculate the

stresses, it is possible to obtain comparatively simple formulas for a suffici-

ently small n.

When the halfplane with a circular hole is extended, the law governing the

normal stress distribution along the connector for a sufficiently small n may

be determined by the following relationships

a,/p = (_/2)'12E (l -- E) (2 + 8E-- 3_') (E = y/h); (19)
/ (8/_)'1=_ for y # O;

a_/p = ((44/15) (2_'/=)for y = O.
i

Here p are the tensile stresses at infinity; y is measured along the

rectilinear boundary. Since these expressions represent the principal terms

of the corresponding stresses, the smaller is n, the less accurate are the
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results derived from calculations based on formulas (19).

The following formula is obtained for the concentration coefficient:

7 | , 3 ¢4), :

where e = in(l + n + / 2n + nz).

(20)

In calculations based on formula (20), the smaller is e, the smaller the

error will be, and if 0 < g _ 1.9, it does not exceed 2%. If _ > 1.9(n > 2.42),

it may be assumed that the concentration coefficient practically equals three,
since k = 3.04 in the case s = 1.9.

When a plane with two equal circular holes is extended, the concentration

coefficient may be determined according to the following formulas

)
k1=a_--_m1+ 1 ; k, _ ,, . (21)

2 ch, (oh, q- I). "A=
sh 2_-_-_'

The subscript i corresponds to transverse extension, and the subscript 2

corresponds to longitudinal extension; the subscript 3 corresponds to uni-

directional extension; e = in(l + n + /q + q2/4) • The constants m (s = i, 2,
s

3) may be determined from the following equation
p

m,_(O,716_O,O393e,+ i_h', _ ! ! sh,, "
. sh 2, + 2,/= "2"_ T _ sh2,+ 2,_ (22)
$_| ¢ "

.... .i ,---{i-,(0,769--0,179,'-I-0,341,').-

In the latter formul_ the superscrlpt is chosen for the case of transverse

extensions, and the subscript is chosen for the case of longitudinal extension.

For unidirectional extension, the components with a double index must be
omitted.

The error of the calculations based on formulas (21), (22% does not exceed

2% in the case 0 < _ _ i. If E > i, the Ling solution is sufficiently valid.
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_"NUMERICALMETHODFORCONFORMALMAPPINGOFSIMPLYANDMULTIPLY
CONNECTEDREGIONS,BASEDONTRIGONOMETRICINTERPOLATION_

e. F. Fil'chakov !_/ /J_ _

(Kiev) , ._ 6 7 -- 2_'537

i. Let us investigate the problem of mapping a unit circle J_J < i onto

a simply-connected region z = x + iy which is given beforehand and which is

bounded by a simple closed profile. We may standardize the mapping function

z = f(_), as is customary, by the conditions

z = f (D I,-o = o; z = f (_)I,-,= xo, : (1)
J

i.e., we require that the points _ -- 0 and _ = i be mapped at the points

z = 0 and z - x 0 (Figure i).

s

#J

%

_-_. • -z_../"

p

?"' U,
,

•_' -_ •
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Figure i

We shall to determine the mapping function in the form of a polynomial

with complex coefficients C :
n

m

z=_ c.¢n; C. =A.+iB.. (2)

In the case of m + _, the polynomial (2) is transformed into a series

which will perform the precise mapping functio_ according tothe Riemann theory.

Let us divide the unit circle J_J = i into 2m = 4_ equal parts, so that

the polar coordinates of the division points _n = rnei_n will be, respectively,
nz

r.=. l; T.=-._; n=O, 1, 2 .... , 2m--l. _ (3)

We shall designate the transforms of these points z = x + " in the
n n lYn

region z as nodal points (Figure i).

The orthoganality conditions of the trigonometric functions of the

discrete argument will play a significant role below in the case of equally

spaced data. An elementary proof for these data was given by A. N. Krylov

even in 1906 [(Ref. 2), Section 53; (Ref. 5), Section 59], namely:
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{ Ofor /4=v;sin ]_p. sin _T. =
n-, m/2for ]=,;

-m I 0for ]_v;cos j_. cos ,_. =
.-* {ra/2for ] = ,;

sin]_. COS v_. = 0 for any ].
n--|

(4)

In the region _, let us now change to polar coordinates and, employing
the Euler formulas for _,

¢"= r'e'_ = r"(cos v? + i sin vT'), i

have

let us represent equation (2) in the following form

m - i

z = x + ill = ,_(A, + iB,) [r" (cos ,?+ i sin ,?)l.

Separating the real and imaginary parts, we obtain
m m L

x= _,r'(A, cosvt--B, sinv_); y--- Er'(A, sin,_B, cos,?). ',, (5)

In particular, for the nodal points for which r = i, _ = _n ng= -- , we
m

x, = _ A. cos _4 -- B. sin ,?.;

" " (6)
•, = Z A., w, + 8, cosw.

Equations (6) enable us to calculate the nodal points readily from the

known coefficients A , B . However, we are also interested in the opposite

problem -- determining the coefficients A , B_ from the nodal points. For

this purpose, we must invert system (6), which may be regarded as a system of

2m equations with 2m unknowns Aj; Bj; j = i, 2, ..., m. The solution of the

system of linear algebraic equations for large m is a problem which is extremely

complex in technical terms. However, in this case, if the angles _n are

selected as equidistant, and if the orthogonality conditions (4) are employed,

system (6) may be transformed quite simply, and as a result we obtain:

m

Aj = iT. + _ sin ]Tn; ?n = _ ,
n--I . (7)

m

_. = _ cos IT.-- _ sin/T_; l = 1, 2, ..., m.

Actually, multiplying the first of the equations (6) by cos J_n' and

the second by sin J_n and summing up the results with respect to n, we obtain

_COS]_n + _ sin IT . _ (A.cosv_,--B. sin v?,) cos ]_, +
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m m

ar _ (A, sin v_tn -I- B," cos v%)Jn j_,,_ = E A, { _. cos J_n cos _?n "i--
vm'l I v_l n_l

(÷ ÷/ "= AI + ---- mAI, - '

since all the inner sums, with the exception of only the two sums with respect

to A = Aj, vanish in view of the orthogonality conditions (4). We may obtain

the formula for B. in a similar manner.
]

2. Formulas (7) reduce the problem of calculating the coefficients of

the mapping function (2) to determining the nodal points which are not known

at the beginning. Let us now formulate the iteration process for determining

the nodal points within an accuracy which is determined beforehand. This

represents the basic difficulty of this problem.

For this purpose, let us investigate two systems of m nodal points: even

n = 2_ and odd n = k = 2_ - I, v = i, 2, ..., m.

The coefficients Aj, Bj, formulated according to a system of m even nodal

(+m) (+m) A! -m) , B! -m) according topoints, may be designated by A. , B. , and by
3 3 3 3

odd nodal points, so that we shall have the following, according to (7)

m

. = -_ xs, cosj_s, +y2, sinj_,,; j = l, 2.... , m; (8)
,e,-1

m

vmll

and correspondingly

Z|m _ _ 0

'EA_:") = -_ x, cos]_k + y, sinl_t,; i= 1, 2, ..., m;
k,-1 -

b'n--I .

8;",= ' 2• _ y, cos j_p, -- x, sin j_,; k = 1, 3, 5..... _ -- 1.
k,,,l

The following formulas hold for the quantities introduced (Ref. 4):

A_ ±'' = _ (:t=l)" al+,m'= ai :!: al+.m -t" al+_ -!- ... ;.
rio

B}*") = _o (:t: 1)"bl+,., = b/+: bi+_ + bi+_ + ...,

(9)

(io)

where an, b are the coefficients of the series representing the precisen

mapping function, i.e., the series into which the polynomial (2) changes in

the case m ÷ _.

Let us assume that for given m = 2_ the values of the even nodal points
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are knownin the zero approximation

z(.°,)"--x(s°_q- iy_°,";v = I, 2.... , m; z,_ = 7.o. (ii)

This enables us to employ formulas (8) to compute all A! +m) B (+m)
3 ' j ;

j = i, 2, ..., m, and the corresponding polynomial of the mth power (2)

"o " = Cx_",)r. ...z( )= P,,,(r.) + C;")r., + + c_)r.,,;

_ qm)= A}+m, __ iBm+m, (12)
%

maps the unit circle I_I < i onto the region Z0, so that its boundary will

precisely pass through the given nodal points (ii). This statement follows

from the derivation itself of formulas (8), since the quantities A_+m), B.(+m)
J J

were determined from a system of linear algebraic equations, whose right hand

, y(0).sides contain the coordinates of the given nodal points x2(O)
2v

If we now assume approximately the following

we may calculate the odd points zk : x k + iy k from these coefficients

according to formulas (6). These points, generally speaking, will not lie on

the boundary of the given region Z (see Figure i).
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Let us plot them on the normal to the profile or by any other method

(Ref, 5). As a result, we obtain a system of m odd nodal points

z_)=x_)+iy_O,; k=l, 3, 5, ..., 2m--l, (14)

according to which, according to formula (9), we may calculate all C!-m) :

!-m) (-m) 3= A + iBo .
J J

The new polynomial

• z(') = P-m(_) = C_-')_ + CI-m)_ ' -I-' • • -b C_-')_ m (15)

maps the unit circle _ l onto the region _(i), so that the boundary of the

region _(i) will now precisely pass through the odd points (14) lying on the

given profile. Therefore, setting

A}-m' =a}"; B} -m) :b}", (16)

by employing the same formulas (6) we may calculate the approximate points

z2_ = x2_ + iY2v ; v = i, 2, ..., m, and, plotting them on the given profile,

we obtain a more accurate value of the desired even nodal points (see Figure i).

We may repeat the iteration process until the subsequent and preceding

approximations coincide withinthe given accuracy. Thus, employing the coeffici-

ents (13) or (16), we may calculate an arbitrary number of points, in particular

2m, 4m or 2_m, which enables us to double, quadruple, or increase by a factor

of 2v the magnitude of the iteration cycle m. For sufficiently large m - 2v,

the quantities A_+m), A_ -m) and B_+m), B_ -m) coincide within any degree of
J 3 J J

accuracy which is specified beforhand, which is a signal that the process has
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ended.

Actually, in view of the Riemanntheorem, the series obtained from (2) in
the case m+ _ is a converging series. Therefore, for any s which is specified
beforehand, wemay always determine the numberm such that the following con-
ditions are satisfied

:g g

I + a_+.,+ a;__=..± ... ! < _ ; I± b_+,,+'b_+=,,± .... I < _-, (17)
Also, according to equations (I0), within an accuracy of _ we shall have

A_+''_ AF" = aj:_+='= BF'_=0j;j= q,_,.....,m. (18)
We may determine the initial values of z (0) graphically [(Ref. 5, section

2v

631)] or by means of electromodeling (Ref. 3).

3. The iteration process described in section 2 may be significantly

simplified if we obtain formulas which directly relate the even and odd nodal

points. The necessity is thus eliminated of calculating at each step the

intermediate approximate coefficients A_±m); B_±m), since the entire iteration
J J

process will be immediately satisfied by the nodal points. Determining the

nodal points within the requisite degree of accuracy, we may calculate only

once the desired final coefficients A_ +m) = A_ -m) = a.; B_+m) = B_ -m) = b.
J J J J J J

according to formulas (8) or (9).
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Let us now derive the requisite formulas, and let us express the k-points --

i.e., the odd nodal points -- by means of the even 2,)-points.

Substituting the coefficients A (+m). and B!+m) in formulas (6) for the
J 3

odd n = k = 2,_ - 1, we have

x. _. AI÷'_cosj_.- BI+_' • • •
-- sln(l+Tmk;i-1 (+mr

m

Yk = _, A}+m)sin ]_0a + B_+'1 cos i?*.
1--I

Thus, omitting Aj, Bj by means of formulas (8), we obtain

!
_ = _-_ _ (_,._o_i_,,+ y,._i. i_,,)c= i?, +

j,,,1 ,--I
nt

'-F (x=, sin ?=, -- y=, cos/T=,) sin J_k = "_"
j-1 ,--1

q- y=, sin ] (cp=,-- ?,),

or, taking (3) into account, we obtain

m

Xk = -_- X=,COSj_=,--k + y=, sin J?S,--_; " " (19)
/-1 ,-1

m m

• 'EEy, = _ y=, cosj_=,-k -- x=,sin j_s,-a,
/ml Wing
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where

k = l,

In addition, since

#_--k).. ,=i, _..., m;

3, 5 .... . 2m--1.

(m--j)_=,-,= (m-/) (2_- k). = (2v-- k) = --jcp.,.,,
m • -

1
3
5
7
9

-I 1
13
15
17

.19
2!
23
25
27
29
31

TABLE i

_2v--k

0,603553 39
0,103553 39

m=8

• 7=,--k

0,628 417 44
•0,187 075 72
0,083522 33
0,O24864 05

m=16

l=,--k

0,634 573 15
0,206034 89
0,116 929 28
0,076 15647
0,051 292 42

_. 0,033406 95
0,018 959 17
0,006 15571

1 m = 32 2,,--.J
I - "I=,,--k

0,636 10836 1
0,210670 39 3
0,124 75699 5
0,087 3379O 7
0,066072 57 9
0,052 13748 l 1
O,04213575 13
0,O34479O6 15
0.028323 35 17
0,023 17658 19
0,01873O53 2t
0,014 780 15 2,3
0,011 18143 25
0,007 827 72 27
0,004635 50 29
0,o01 535 21 31
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we have the

always odd

In this case,

Substituting

obtain

following, taking the fact into account that the number 2v - k is

cos h'=,-, + cos(ra -- 0 '_=.---*= O;
m

cos T ?=,-, = O;

cosm?=,...,= cos (2v-- k)_ = cos _ = -- I.

2"_ = 2, 4 .. , 2m; k = i, 3 .., 2m- 1,.we have

E cos m i= cosT _"-* + cosm_p=,_, +
i-1 , ,

mA--!

lcos j?=,-k + cos fm -- l) ?=,Lk]+
1.1 : -

for any m;

these values in (19) and changing the order of summation, we

m M

x,.= +*E E,,. s'nJ',,.-,.;
• --1 v.I/--1

./t/ _ wR

1

•-1 ,--I],,-1

(20)
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or finally

where mt_,. J

Ts,-k= _ sin]T2,-k-----ctg_ ?,,_k;.TZ,-h = m ' (22)
• i-I

M m .I"

°.=_E,,,.,o.=_E,,,..
,-I ,=I (23)

Exchanging the roles of the numbers 2v and k in (19) and taking the fact

into account sin _2_-k = - sin _k-2v' and cos_2v_ k = + cos _k-2v' we obtain the

formulas for directly computing the even nodal points from the odd nodal
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k

I
3
5
7
9

1i
13
15

• xv

1,476 618
1.307 548
!,043 827
0,768 660
0,531995
0,353 268
0,2O3945
0,066 794 •

.T,

TABLE 2

2,I

0,214 983 0
0,589 802 2
0,839 197 4
0,963235 6
0,999 488 8
!,ooo ooo 1o
1,000 000 12
1,000 000 14

16

1,500 052
1.409 688
1,181 805
0,903 756
0.643 750
0,436 547
0,276 286
0.134 426

0

Y:_, 62,

0

0,415409
0,731505
0,9149O9
0,989 642
i,000 022
!,000 017
1,000015
1,000015

o.oooog2
0,000048
0,000044
0,000 038
0,000 027
0,000 022
•0,000 017
0,OO0O15
0,000015

1,500000
1,409644
!,181 775
0,903 740
0,643 746
0,436 547
0,2.76 286
O,134 426

0

0
0,415389
0,731562
0,914 874
0,989615"
1,000000
1,000000
1,000000
1,000000 "

points in absolutely the same manner:

x=, = o_-- k_ Y,'r,,,_,;

where

g,,= °;- ,

_--11 tm--I ".

*= i. .... .
k--I k--I,

(24)

(25)

and the coefficients Y2v-k retain their previous value (22).

We should stress that all Y2v-k are constant quantities and do not depend

on the form of the mapping region, so that they may be calculated once and for

all. Thus, for given m different basis values of Y2v-k' _ = _ only will hold_
since according to (22) we have

_-n =--Tn; _±n = _ _n" (26)

Table i presents the basis values of the coefficients Y2_-k for m = 4, 8,

16, 32 computed to eight decimal places. All of the computed formulas

assume a simpler form for the symmetrical regions.

Example. Within an accuracy of I_] _ 0.00005, let us map a unit circle

[_[ _ i onto the region z bounded by a box-like curve, i.e., onto a rounded

rectangle, whose dimensions are shown in Figure 2.

/28____3
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1 _l,201 333
3 0,246 170
5 0,047 952
7 O,OO2871
9 ..- 0,000840

11 0,001 164
13 --O,q._0298
15 --0,000 254

TABLE 3

J I1" i
@l,20l 361 •

0,246 188
0,047 957
0.002 872
0.000 841
O.OOl165

--0,000 299
--0,o0o 254

17 .f 0.000 253 "
19 0,000016
21 --0.000 142
23 0.000 059
25 0,000 054
27 --0,000 068
29 .0,000 008
31 .0,000040

-Fo,ooo 254
0,000 016

---0o000141
0,ooo o60
0,000 o53

--0,000 069
0,000 009
0,000 040

° . ....... ,
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Starting with the given x 0 = 1.5 and y_ = 1.0, determining the even nodal

points successively in the case m = 4, 8, 16 in the zero approximation, as is

shown by the crosses in Figure 2, and then performing three steps on the level

m = 16 and two steps on the level m = 32, we may solve the formulated problem.

Table 2 presents all the computations for the second half of the fifth step

(n = V), the deviation from the profile _2_' of the approximate nodal points

z2v. Table 3 presents all the coefficients A! -+m), computed on the basis of the
3

even and odd nodal points which are found, in the case m = 32, and A 2 = A 4 = ..

... = A = 0.
m

In the case of symmetrical regions, all the coefficients B'(+m).-= 0. Fig-
3

ure 3 presents the approximating polynomials z = P _ m (_) found for m = 32 in

the section 0 _ x _ 0.30. For greater clarity, the scale on the y-axis is in-

creased by a factor of 2500.

A more detailed treatment of the computational method and further examples /285

are presented in the studies (Ref. 4, II, and 5 chapter III, § 59-63).

4. The method presented above may be readily generalized to the case of

external and doubly-connected regions. Thus, for external regions the given

accuracy is achieved, as a rule, for considerably smaller m, so that the amount

of calculations is much less than for mapping of the same inner regions. In

the case of doubly-connected regions, we may formulate the iteration process

similarly to the manner employed in the articles by B. F. Shilov (Ref. 6) and

Yu. V. Blagoveshchenskiy (Ref. i). Employing the results given in section 3,

we may establish the direct relationship between the even and odd nodal points.

We may formulate another method, which may be applied to the mapping of

regions having any connectivity, by means of the method of successive con-

formal mapping. For this purpose, we may first reduce the n-connected region --

drawing the n - i branch cu_ in it -- to a simply-connected region. By means

of the method of successive conformal mappings (or combining it with the method /286

of trigonometrec interpolation), we may map this region onto a halfplane with

obligatory specification of the transforms of all the branch cuts. All the

transforms of these branch cuts will be located on the real axis. If we then
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map the halfplane with a n - i

ing canonical region, so that the branch cut transforms change into the corres_

ponding branch cuts reducing the canonical region to a simply-connected

region, we may formulate the requisite mapping. Figure 4 schematically shows

the mapping of a simply-connected region onto a halfplane with a horizontal

branch cut, which may be most conveniently used as the canonical region when

solving the problems of hydroaeromechanics. Thus, in the first step (without

drawing the branch cut) we may map the deformed halfplane z onto the halfplane

Zl, and may simultaneously calculate the series of the transforms of points

on the contour r2, according to which we may formulate this profile in the

region zI. After the line rI is mapped onto the real axis Xl, we may draw the

branch cut ABCDE and may employ the function K to map the simply-connected
s

region zI which is obtained onto the region z2, and then onto the halfplane _,

branch cut on the real axis onto the correspond-
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q

as was discussed in detail in [Ref. 5, chapter III, sections 51-55]. When

the canonical region w is mapped onto the halfplane _, it is advantageous to

employ the Christoffel-Schwarz integral. The method for determining the con-

stants of this integral was also discussed in [Ref. 5, chapter III, § 51-55].

The dashed lines in Figure 4 show the manner in which the results are gen-

eralized to the case of triply-connected regions. In particular, this method

yields good results when solving the problem of an underwater wing in a shoal,

when the bottom has an arbitrary form. When solving the problems of elasticity

theory, it is advantageous to select a concentric ring with concentric branch

cuts (in the case n _ 3) as the canonical region w.
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COMPLETEELIMINATIONOFSTRESSCONCENTRATIONSAROUNDHOLES
IN PLATES

N. P. Fleyshman_B, L. Pelekh _f J_) $ - - _

N67-24538

The problem of the bending of thin plates with holes has been investigated

in studies by several authors. Only two conditions are satisfied out of the

three natural boundary conditions on the hole profiles in these studies, as

well as in the elementary theory of plate bending in general. Due to this

fact, the problem regularly arises of the reliability of the stress concentra-

tion coefficient thus determined around holes. Actually, the transverse shear-

ing stresses, which should equal zero on the free edge of the hole, do not

equal zero. Their influence on the plate deformation thus increases with a

decrease in the hole dimensions, and we cannot overlook them, as compared with

the influence of bending moments (Ref. 6).

We can raise a similar question with respect to the problems of total

elimination of stress concentration by equivalent reinforcement of the holes

when thin plates are bent (Ref. 7, 5). This is due to the fact that only two

boundary conditions are satisfied here on the profile of the plate joint with

an elastic rib. It is therefore natural to make an attempt to clarify these

problems, based on special plate theories which enable us to satisfy all three

boundary conditions on the hole profiles.

The problem of the accuracy of the stress concentration coefficient

obtained by the classical theory of thin plate bending has already been studied

by several authors (Ref. 6, et al.).

However, we should point out that the main problem in designing laminated

objects with holes is not, as is known, determining the stress concentration,
but. the elimination of this concentration. This article is devoted to this

problem.

Let us investigate a finite elastic plate with curvilinear holes which are

bounded by the profiles L_(k = i, 2, ..., n). The hole edges are reinforced

by elastic curvilinear rods having variable rigidity, which are joined to

the plate. It is assumed that the reinforcing elements are thin, and therefore

the conditions under which they are joined to the plate are not investigated

at the profiles L'k, but on their axial lines Lk. The rod axes and one of the

main central axes of inertia of their transverse cross-sections lie in the

middle plane of the plate.

We shall call such a rod-like system (ring) an equivalent reinforcing

system of the t_k_hhole of the plate. For a given loading, this system complete

ly replaces the influence of the absent portion of the plate within Lk, i.e.,

it specifies that the stress-deformed states of a solid plate without a hole

and a plate with a hole, reinforced by an equivalent ring (the condition of

equivalenCe),are identical.

/288

/289
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By definition, when solving the problem of the equivalent reinforcement
of a plate with n holes, without restricting the generality we may confine
ourselves to investigating the case n = i.

In different variations of special theories [see (Ref. i, 2, 9) et el.],
the plate bending is described by a system of differential equations of the
sixth order with respect to three independent quantities, namely the normal
bending of the middle plane w(x, y) and two functions which are introduced in
various ways by different authors.

In order to solve the boundary value problems, we believe that a system
of differential equations of plate bending is expedient, in which the normal
b ending w and the elastic rotation anglesof the normal element Yx and Ty,
pertaining to the middle plane, are included as the desired functions. This
system was obtained by B. F. Vlasov (Ref. 2). It was also obtained as a
particular case, out of the more general equations encompassingdifferent
variations specifying the conditions on the boundary equivalent planes, by
M. P. Sheremet'yev and B. L. Pelekh (Ref. 8). If the external stresses on the
bases of the plate equal zero, then these equations have the following form
(Ref. 8)

• 5 ,-I 5 h_2O_ 3+_ 8
_,--_-h _, = _- _- + 20--_)" _(Aw); (1)

5 -s 5 __so_ 3+ 2_ 0 "

where A is the Laplace operator; 2h -- plate thickness; _ -- Poisson coeffici_
ent.

By means of the functions w, Tx, Ty, we may write the conditions of

equivalence in the following form

w(x, y)= w_(x, y); / •
•_ (x, y) = .o (x, y);

o

"z'j,(x, y) = "_u(x, y),

(2)

where the quantities on the right are the main bendings and rotation angles for

the solid plate, and the quantities on the left are the bendings and rotation

angles for a plate with a reinforced hole under the same loading.

The junction conditions at L 1 between the plate and the equivalent ring

have the following form
p (s) = N.; h (s) = H..; m (s) = M.;

(3)w. = w; _1 (s).= -- _. (s); _2 (s) = _, (s), ;
(4)

where p(s), h(s), m(s) are the transverse forces, the bending moments, and the

twisting moments influencing the ring from the plate; Wp, Yl(S), Y2(s) -- bend-

ing, twisting angle, and bending angle of the ring; Nn, Hn_, Mn -- intersection

force, torque, and bending moment in the plate at LI; Ys' Yn -- pertain to the
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middle plane of th_ rotation angle for the normal element around the main normal

n and the tangent r to LI.

The right hand sides of conditions (3) and (4) are known, since only

the corresponding problem for the solid plate will be solved. In the general

case, the quantities Yn and Ys may be expressed by the following formulas

(Ref. 8): 0w

(5)

in which e and e
nz sz

plate.

are displacements pertaining to the middle plane of the

The problem of selecting the equivalent ring consists of determining its

rigidity according to the given loading (3) and deformation (4). We have the

following from the Clebsch relationships (Ref. 4) for a thin plane ring

dTi --
•_P=_F _qn; _r=d-_ .. (6)

where 6 and 6 are the increases in curvature and twisting of the ring; q --
p r

variable curvature of the ring axis; s -- arc along LI.

Comparing formulas (5) and (4), we find that, if the displacements differ

from zero in a solid plate, we may obtain the solution for the problem only

by utilizing the deformation theory of reinforced rods which takes the fact

into account that their transverse cross-sections do not remain normal to the

curved axis, in general.

Adopting this hypothesis, we may add one relationship to (6) for the

displacement e of a reinforcing rib.
P

dwp
ep= -_ + _,. (7)

We may write the dependences between the internal stresses in the ring and

the deformation parameters in the following form

L n = A_p; L, = C_r; VB = Bep, (8)

where Ln is the bending moment, L_ -- torque, VB -- intersection force; A, C --

the desired ring rigidities in bending and in twisting; B -- ring rigidity for

displacement.

/291

The quantities Ln, LT and V B may be determined by integrating the equations

of statics for the portion of the ring subjected to loading (Ref. 3).

Taking into account the junction conditions at L I (4) and formulas

(5) and (7), we may express the desired ring rigidities from (8) in the follow-

ing form A (s) L. ; C (s) L, VB= a_, - : B (s) = ------
a'_n

_" --qT. ---_---qT, _[,+ _" (9)
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The existence of solution (9) must be studied in each particular case.

Whenthere are displacements in the plate, the rigidities of the equiva-
lent ring in bending and in twisting differ, generally speaking, from the
corresponding rigidities obtained within the framework of the classical bending
theory (Ref. 7). In addition, this approach enables us to find one third of
the rigidity for displacements, and to determine more accurately the para-
meters of the reinforcing element.

at
x y

torques Hxy (the x, y-axes are directed along the plate axes of symmetry). The
solution of equation (i) for this case has the following form

IW = 2D (l--_ [(vMv -- Mx) X' + (vM. -- M#) y|--

-- 2 (I + _)H.uxy];

I . (i0)
_* = D (1.-- ,'i [(M_ -- vMu) x + (1 + v) H_uy]; [

! I
_# = DO--_')[(Mu--vM_)Y+ (I+#) H_I. p

We may employ formulas (5) to establish the fact that in this case the

displacements equal zero, and the same internal stresses and momen_ in _e plate

are obtained as in the elementary theory of plate bending. In particular,

VB = 0.

Let us investigate a rectangular plate having finite dimensions, loaded

the edges by bending moments M , M which are uniformly distributed and by

We find from (9) that displacement rigidity B is arbitrary, and

we obtain the following for the rigidities A and C in the case e = e = 0:
nz SZ

L. L,
A(s) = a-_ a_; C(s) = _----_-. , (ii)

q a-_ as, q -_- t O-'_6"is

Formulas (ii) coincide in this case with similar formulas obtained in

(Ref. 7). It thus follows that the rigidities A and C, found in (Ref. 7) on the

basis of the elementary theory for several cases of equivalent reinforcement

of holes having a different form in an isotropic rectangular plate, are correct

from the aspect of a more correct theory of plate bending (Ref. 2, 8).
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As we have already stated, the amount and type of ring rigidities to be

determined depend on the manner in which the ring deformations are described

by theory.

Let us now assume that a reinforcing ring is a thin-walled, plane curvi-

linear rod with a small initial curvature, whose largest transverse cross-sec-

tion dimension is small as compared with the radius of curvature of the

rod axis (Ref. 3).

Let the hole in the plate be circular, having the radius R. In order to

determine the rigidity in bending A = EI, the rigidity in twisting C = GI

and the sectorial rigidity of warping B_ = EI ,just as previously, we obtain

the following for the problem (i0):
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t.,, • B. (s) = o_, +B!. o_ ;A (s).;" l o_ 0,.,,,'
R 8. OsS OaOss R "

O'_ 1

t., (o--_, + _- • -_ _

•

(12)

Here B is the bimoment which is in operation in the ring transverse cross-

section and which may be determined by integrating the equations of bimoments

(Ref. 3), which may be reduced to the following form

04a9 . 1 O_ Osw , 1 O_

• O_'w I ' &¢ -- --d_tv . 1 dw
_a-_+w- _- _-_+w._

!

For the particular cases under consideration of a uniform stress state

(bending and twisting), we obtain

4
B'+_B=O.

, i
We thus have

B = C_ cos 20 + C_ sin 9_0, i
I

where C 1 and C2 are arbitrary integration constants.

Assuming that C = C2 = 0, we have B = 0. In this case, the expressions
1

for rigidity in bending and twisting of a reinforced circular rod coincide with

formulas (ii), and the sectorial rigidity of warping equals zero. In the axi-

symmetric case, the quantities C and B are arbitrary, and A = (i + _) RD.
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EFFECT OF A STEADY THERMAL FIELD ON THE STRESS CONCENTRATION /294

IN AN INFINITE ELASTIC PLANE WITH CIRCULAR HOLE '

V. L. Fomin_ J

(Leningrad) " . - _

24539
Let us investigate the problem of the stress state of a_n_ini_e elastic -

plane with a circular hole having the radius R in the presence of a steady

thermal field T(r, e) which satisfies the condition of boundedness at infinity

and the boundary conditions on the hole profile T = f(8). We shall thus assume

that there are no external stresses on the profile, and the stresses at

infinity equal zero. We may solve this problem by employing the well known

analogy of N. I. Muskhelishvili between temperature stresses and stresses

arising due to dislocations I (Ref. i). It has the following form in complex

potentials of Kolosov-Muskhelishvili:

where z = x + iy = reie; ....
h

--_+I' _-_-_J[l)e _ (2)
0

in the problem of plane deformation. For the case of the plane stress state,

i.e., for a plate, the Lame coefficients %,p -- K = 3 - 4o, _ = _E (_ --

i - 2o

constant given by the Duhamel-Neumann law, _ -- coefficient of linear expansion)/295

must be replaced by the corresponding quantities with asterisks -- i.e., by

mechanical and thermal constants in the case of the plane stress state. If we

change to the Young's modulus E and the Poisson coefficient o, the expression

for y assumes the following form in the case of plane deformation

2f I

"_= 4_ (l- o)R [ (0)e,_dO,
0

and in the case of the plane stress state

2z,

-_-- -- _ R I @)e'°de.

Only this latter case will be examined below.

(3)

(4)

In the case of real y (in principle, this can always be achieved by

changing the order of reading 8), we obtain the following simple formulas for

the stresses:

a_=¥ 1--_ cosO,
(5)

Rso0=
....... r _

i
Muskhelishvili, N.I. Nekotoryye osnovnyye zadachi matematicheskoy teorii

uprugosti (Basic Problems of Mathematical Elasticity Theory). Moscow, Izdatel'

stvo AN SSSR, 1954.
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iI
• ,e = l -- F_ sin 0,

%, = _,z= 0. (5)

At infinity, the stresses strive to zero, and the order of decrease is r-l.

Figure l presents graphs showing the dimensionless stresses R__ Or ' R__ o0 in
2Y 2y

the case 0 = 0 as a function of the dimensionless radius r/R. The solution

obtained may be generalized to the case of elliptical and other types of holes

for which we know the function which performs conformal mapping of the plane

with a hole onto a plane with circular hole.

We shall assume that

!(o)=h+AcosO+ ., i• - I (6)

and that there is no component with sin 8. Then

=E
._ = -- -v R A -- (7)

is a real constant. Employing formula (i) from

a, +. o0= 21¢ (z) + ¢ (z)! I

we may readily obtain(o r = Tr0 = 0 for r = R) the expression o 0 on the hole

profile

ae = --aEA cos0 for r = R. (8)

t6

t;

_8

t

o! I I I i7 a

\

2 3 4 5. #

Figure i

Let us apply the stress field corresponding to the Kirsch problem (for

stresses at infinity ox p, Oy O, Txy 0) to the solution obtained. For

the total problem, we obtain 08 on the hole profile in the following form

=o = p (3 -- 4 cos s 0) -- aEA cos 0 for r = R. (9)
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The stress ox on the hole profile maybe expressed by the following formula
/a_ = 06 sin _ 0 = [p (3 -- 4 cos s O) -- aEA cos O] sin s O. (10)

Let us introduce the stress concentration coefficient on the hole profile
as follows :

Q

p, (11)

we shall investigate the following coefficient along with it

a¢

If we introduce the notation

(12)

aEA
-- : a; (13)

P

COS6 : :, i (14)

the coefficients K and k may be expressed as follows:

K (u) = (3 -- 4u' -- au) (l -- u'); (15)

k (u) = 3 -- 4uS -- au. (1 6)

/¢'] _\ *'_4 :

' ,,,f I ,o_j

I', L'

-, \

i ,,'- _',
1 ,' \',_

it 2I : t ',_'o_<'J...

/,,/ _', _ ,,

/__ \,<c,,_,,.'o,,_-o,t , o _,\ a_)
I I IkW

Figure 2 Figure 3

The stresses may be arranged symmetrically with respect to 0 = 0, and

the quantity u changes between -i and i.

This is valid, if there is no plastic flow at any point in the region.

This leads to the following inequality on the hole profile

--z_V'3<p(3--4ul)--aEAu<_sF3 : (17)
i i

and the yield condition of Mises is thus assumed. Under the Saint Venant-Trask

condition, we must substitute 2m in (17), instead of m fT.
S S

ExaTr_le. Let the values of the main parameters be as follows:

I l_ c_?% 8_e = 600 _,sdyne;a : 12.10--s'_.;E = 2. = 2000cMt i p
i

and the thermal field changes on the profile according to the following law

J
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Then A = i00, a = 4,

k (u) = 3- 4u' -- 4u; K (u) = (I -- u_ k (u).

The condition that there be no plastic flow on the profile is thus satisfied.

Figure 2 and 3 present graphs showing the change in the coefficients k(u), K(u).

The maximum k(u) is achieved in the case u = -0.5 (e = 120°), and equals 4.

The minimum is achieved in the case u = I (e = 0) and equals -5. The maximum

point K(u) is u = -0.250 (e = 104°30'), and the maximum itself equals 3,5156.

The minimum point is u = 0.781 (e = 38°40'), and it equals -i.0000. For

purposes of comparison, graphs of k0(u) , Ko(U) corresponding to the absence of

a thermal gradient (a = 0) are presented.

We should note that in the general case, when the stress field at infinity

has the following form

% = p; au = _p (B 4= 0); '%_g----O, i

it is advantageous to introduce two concentration coefficients characterizing

stresses in the profile zone:

o*. _ 1
K_ = _, K v= _o" (18)

l

If we investigate the following coefficients

al. a0 kx ! (19)
kx= F' k,= _ = _-,

along with them, we then have
k

K. = k. sin 20, K u = ku cos s 0 = -_ cos' 0. (20)

Let the boundary function for temperature be expanded in Fourier series

[(0) ----Io + AcosO q- BsinO + ..., (21)

and then

where

k. (u) = 3 -- 4u _ + _ (4u' -- 1) -- au-- b .]/'l--'_l; k u (u) =
l

= _.k, (u),
l I

K, (u) = k, (u) (1 -- u');' K_ (u) = -_ u 'k, (u),

(22)

(23)

aEB
b =---_--. (24)

The condition of no plastic flow on the profile may be expressed by the

inequality k(u)<-_o (25)

/298

where • is the yield limit in the case of pure shear.
s
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./:EFFECTOFTHECREEPPROPERTIESOFTHEMATERIALONTHESTRESS /299

CONCENTRATION AROUND A CIRCULAR HOLE IN A PLATE

'_ L. P. Khoroshun / " _ ,-_ . _ .

When the stress concentration around holes in plates and sheils is in-

vestigated, it is interesting to study the influence of the inelastic behavior

of the material upon the stress distribution around the holes. Studies in this

area have only pertained to elastoplastic problems (Ref. 4). As of the

present, there has been insufficient research devoted to the influence of the

material creep properties upon the stress concentration, although it is of

great practical importance for studying the supporting power of structural

elements (Ref. 3).

This article studies the stress state of a plate with a circular hole on--_

the basis of the nonlinear flow theory of steady creep. The problem may be

solved by the method of successive approximations. The biaxial stress state

of a plate and the particular cases following from it are investigated.

Foz_lation of the probl_. We shall start with the stress-deformation

relationships assumed in flow theory (_ef, 2)

'1 "_ I
= + _ a_k_n, (I)

where ee.o are elastic deformations; _. -- rate of inelastic deformations;
mj 1j

o.. -- stresses; _ -- shear modulus; K -- volume modulus; T -- second invariant
mj

of the stress tensor deviator,

'r= a_ q- al,+ _s-- axxa,2-- aua_-- %z%3 q- 3 (=_2-F a_snL a_).,' (2)

A power law for the function f(T) is assumed in flow theory. In

general, this law closely coincides with the experimental data, with the

exception of stresses which are close to zero at which the rates of inelastic /300

deformations are proportional to the stresses. It is usually assumed that this

drawback is unimportant. However, in certain problems, it may qualitatively

distort the actual process, as will be shown below. Therefore, we may write

the form of the function f(T) as follows:

[(T) = a+ bT n. (3)

In the case of the plane stress state, it follows from the relationships

(I) that • I • I _kk_,71 'I I

(i, ] = I, 2), (4)

where "e •

_,;= _,/+ _,_, 7"= (0.+ o,_),+ :3(o_,--o,,o_,).
(5)

Employing the equation of compatability and the equation of equilibrium,
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and introducing the stress function F, we obtain the following equation for
the stress function

9K_ (6)

The right hand portion q has the following form here

[_ O_T, O'F. O,Tn O,F o_fn b'F
q-----bL__TnAAFH ox, "_xx,ff-2O-_-_y'_q-'_'_ - (7)

4pr.aap at.aAp ]+-o7 ovn
Equation (6) may be conveniently written as follows:

t

6aKIL 6aK;_ t . "9K_ r-;-T_.-,_ (8)

0

where F 0 is the stress function at the initial moment of time.

We will solve equation (8) by the method of successive approximations,

assuming q = 0 in the first approximation, etc.
6aK_

AaP.) = e _t_AF,, . ,

t "6aK_"t _ " 6aKl_t
AAF(2) = _9KF J_e-'_' - 'q(I) (x) dx Jce _'i_ AAF, ' (9)

0

• i

Biaxial stress state of a plate with a circular hole• Let us investigate

a plate with a circular hole under the condition that the hole profile is free, /301

and the following stresses are given at infinity

o; = p,; o7 = p_; _ = o. (lO)

Thus, we may set n = 1 in the flow law (i), (3), which fully coincides

with the experimental data for many materials. Introducing the dimensionless
coordinate

P = r-_' (ll)

where ro.iS the hole radius, and assuming that the initial stress state is

biharmonlc (AAF 0 = O), we may write equation (8) in the following form

_,+7.$+-@.m,/\ae,+7._+ _. F=

t

= _+3K .le _*_" q(gd_,
where o

ro [3r. . .

" [o'r 2 OT 2 02__.T'_ (._p O(*,+*o)--°'V_--7 " o-_-P " oov + _ " o_
0 Ioo

--+_._x

(12)

(13)
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Under the given boundary conditions, the first approximation of equation
(12) has the following form, as is known (Ref. 4)

F(')=_Ip,-Fp=)( P" In r0' --02)(I P' (14)_" -- (P, / cos 20.

Determining the stresses and substituting them in (13), we obtain the

equation for the second approximation

where

The solution

where the loads Pl

stresses from (17)

"' 9K_ i --'_" '

0

-'s[ 72 408 732
+(P'--P') _--P+ e' p,O+

. _,(91 " 72 180 8T=)q- (P, -h P=) (p_ -- r,, _p, -- _ -F -f- cos 40 +7 '.

+ (P, -- p=) _ _.

of equation (15) is as follows:
i

¥(2) = Fo) 9__/(_br; _"e_ _t-') (p; + p,)' In p + _ + 8"_ + '8 (F _- 3K) d
o

+ (p,+ p=)(p,_p,) 97_____,+ ,_3,2: + + (p,+ p,)'x

× (p, -- p=) --_ -I- _ - e" l 3p' S 7' -+-(P=-- p=)S×

" .t178 312
P')(P'- P'Jt_-7 +
-1- 16 144'_ ^,,

: 7_) cosz. +
756 810_ .
e" - _) cos20 +

( 333 3057 121np 17 61 21 27)]x . 14o _uoe,+-_ +2: 20: +20: s6-_ cos20+

..t_(p; + p,) (pz __ p=), ( 7 61,pe,"+ 1"4pp'8591npe,, _p'199-1-

_p.) (,- 6, 23 ,i) }+ Cos 40 + (Pi __p,)S 4 40p' + 'lOp_ 4-_-' cos 60 d%

and P2 are functions of time. We obtain the following

+ (P, + P=)

791np

(15)

(16)

(17)

(18)

/302

272



..... t

= 8 (_.+ aK)o' (Pa+ P=)'(pl --P=) (]_',--

49 18 In p 10 42) - ,s [ 333 6417 72 In psp, _' - _ + _ + (P'- P'J D_e + _---'7- -

-- e"i Jr 10t,' ioe'o Jr 28e"JJsin20 Jr (p=Jr p=) (p= -- p=)= -- Jr

-t'721_p 678 ' 743 1801rip 81) (. -- "7" -- -7pt -t".'_pe Jr p= 14-_ sin 40 + (Pt -- P=)= --2.--ese=Jr

Jr 549 694. 861 60} dr;2-_-p--'_ - _-_) sin
t

8 (;_K) j. (m + .P')' + _ + +

+ (P'+ P=)(P_-- P=)' --3--6;,+ + + (p=+ p=)=x3p6 2pe 5_]

× (P' -- P=)_ + _ + 3p' _) + (Pl-- p=P E6p -!"
72 in p 170 1281 378 1485_]

+ 7- + p, 1o¢ + sp,o 2_,)J cos20 + (p, + p,) (p=-- p,), x

(765 361np 428 1801n p 81)X -_p, p 7e' "7 - Jr 7_ cos 40 Jr (Pa -- P=)= X

861
X(--2-_p4Jr183 46p. 2__s) COS 60} d,.

We may obtain the following particular cases from (18):

extension (Pl = P2 ) ' uniaxial extension (P2 = O), pure shear

We have the following stress on the hole profile

o_"= (p. + p,) --' 2 (p, - p,) cos20- 9K_b r -,_(,--,_ {e(f-_-K)je ",-. . a =
0

= (p,+ p,)'(p,-p,)-+ P=)'+ ]E (Pl+ P=)(p. -- p_)=+

608 ] , 118.-- a-E(Pz-- p=)S cos 28 -1--i- _'p_-I- p=) (Pi -- P=)=cos40 --

31 ' ,
--'E (P_ -- P=) cos 68} d'c.

In the case of

.e

(18)

unidirectional

(Pl = -P2 )"

(19)

uniaxial extension, we shall have

t • I
•- [. _ 6_(p. --,¢

9K_b Je "+3Kff )p;(_)d'_(2576-- (20)a_2) = Pl -- 2pl cos 20 840 ('_-+-aK)
0

-- 3686 cos 20 + 1770 cos 40 -- 651 cos 60),

at the most dangerous points
t

= d_ (21)a_=) 3p, , e- _(_)FJr3K . "
0

If we assume that

stant, it follows from

the load Pl is applied quite rapidly and remains con-

(19) that

[ t,,,r_,, ] ,8683b .. -- i-_-"_'ER ) ,a[')= 3pl l --_(I P== (22)

/303
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i.e., the stress state is established with the passage of time, and the con-

centration coefficient k strives to the following value

_ (i 8683b t\ (23)

The situation is entirely different in qualitative terms in the case

a = 0. In this case, it follows from (22) that

' 3pill- 8683K_b ," _1 . (24)O_2) 280_ + aK) tPl] iIL

It may be readily seen that the results (17), (18) may be easily trans-

ferred to the case of biaxial stress state of a nonlinearly elastic plate with

a hole (Ref. i). For this purpose, we need only replace the time operators

by the corresponding constants.
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PHYSECALLY NONLINEAR ELASTIC PLATES WEAKENED BY AN

ARBITRARY HOLE

C, I. A. Tsurpal _/ /_ _ -_

(Kiev) " - - -

Non-ferrous metals and their alloys, high-strength ste_Or_b_e_s? 5 4 _i| F'_---% f. __

polymers, and glass-like plastics are used more and more in modern technology. ,

Even for small deformations, these materials do not obey Hooke's law, and there-

fore it is necessary to take into account the nonlinear dependence of deforma-

tion on stress. Nonlinearity of this type is called physical nonlinearity.

/305

The influence of physical nonlinearity upon the stress state in the stress

concentration zone in a plate with a hole is of particular interest. The

stresses are several times greater in the concentration zone than they are

outside of this zone. Therefore, the relationship between stresses and de-

formations outsidethe zone will be linear, and it will be a nonlinear relation-

ship in the concentraion zone for one and the same external loading.

This article investigates the stress state around a square hole with re-

inforced corners, in a plate, for nonlinear dependence between stresses and

deformations, which was advanced in (Ref. 2).

Since the nonlinearly deformed material under consideration is an ideally

elastic material, the objects being studied have an elastic potential. Repre-

senting the potential as the function of the deformation invariants

A = A (J_,J,,J,), ; (i)
I

where Jl' J2' J3 are the deformation tensor invariants, and taking the fact

into account that the volumetric deformation follows Hooke's law in the region

of small deformations, we obtain a nonlinear elasticity law for the generalized /306

plane stress state in the following form

I jr 1 "c, 8', -2- Ie, = _-R% _ t " -- %) + 2-_ _o_o, -- %);

! I (2)

e,== %+ +
!

e_, = -6 " + -_ to_r,,

where K and G are, respectively, the modulus of volumetric deformation and the

shear modulus; er, e_, er_ and Or, _, "[r_ -- the mean values (with respect to

the plate thickness) of the components of deformation and stress, respectively,

in a polar coordinate system (r, _); the mean stress _0 and the intensity of

the shearing stresses t_ have the following form

f%

1 'CSo 2 .
Oo= T (Or+ %);to'= _ = _-f.(4 + o'- oro,+ 3_,). (3)

The dimensionless constant g2 for certain materials (Ref. 6) has the

order 105 - 106, and may be determined according to the following formula

gs = 4,_' 1 + as, i (4)
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where the parameter _3 is determined from the o - e diagram for uniaxial
xx

extension of a sample made of a material which is physically nonlinear.

When the elasticity law (2) is selected, the solution of the plane

physically nonlinear problem may be reduced to integrating the nonlinear equa-

tion of the following type (Ref. 7)

( OF OF _F _F _) (5)AAF--_L F, -_-, _ 'Or'' _" =0.

The operator L depends nonlinearly upon the stress function and its derivatives;

Fr -_-_Foo operator 1A = F +-- + -- Laplace ; the parameter X designates the
rr r r

deviation of the nonlinear elasticity law from Hooke's law, has the dimension-

ality bar -2 , a magnitude on the order of 10 -5 - 10-6 , and is determined

according to the following formula

K d (6)T,'
1

Let us study the stress state of an unbounded, physically nonlinear iso-

tropic plate with a square hole under unidirectional, uniform tension by stres-

sesp at infinity.

The study (Ref. i) advanced an approximate method for solving the problem

of stress concentration around a curvilinear hole in a plate for the elasticity--

law given above. This method consists of the fact that, for any hole obtained

from the mapping function

_(_) = R [_ + Ef(_)], (7)

the solution of the problem under consideration may be obtained by expanding

the unknown stress function F(r, 4) (5) in double series with respect to the

small parameters p and _ (one of them characterizes the physical nonlinearity

of the material, and the other characterizes the curvilinearity of the hole)

F (r; ?; _; e) = Ho _ p'e/F _t' _ (r, ?). (8)
l./-O

In formulas (7), (8) _ < i; R -- real constant characterizing the hole dimen,

sions; f(_) is selected from the condition HOB: R2 = i; _ = peie.

We may obtain the solution by retaining the following number of terms in

the series (8)
F (r; ?; p; e) = Ho lF(O.O)(r, +) + pF (|.°) (r, ?) + p'F (_.°) (r, ?) q-

+ EF(°'') (r, ?) -{- _2F(°.2) (r, _) + peF (s.') (r, ?)i. (9)

In expression (9) the functions F (i' J)(r, 4) (i = 0; i; 2; j = 0; i; 2)

correspond to: F( 0, 0)(r, 4) -- the known solution of the linear problem

for stress concentration in a plate with a circular hole (Ref. 3)

F(O,O_= P &s_21nr);
2--n-;,' (10)

where F (I' 0)(r, 4) is the solution of the same problem obtained by taking into

/307

i
The partial derivatives of F with respect to r and _ are designated by the

corresponding subscripts.
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account the physical nonlinearity in the first approximation (Ref. 6)

F(Z,o) = H__e[_Lr__[!/ s_p._r.I _,\ J] I- j+Inr ; (11)
I • i

F (2 , O)(r, $) is the solution of the same problem obtained by taking into

account the physical nonlinearity in the second approximation (Ref. 5)

F(2,o) = p_ [13 I (--r-' I _ 47 59 s_l (12)gt_"r+_. -_'+_+_-'+_-)J;
F (0 , l)(r, _) and F (0' 2)(r, _) is the solution obtained for the linear

problem for unidirectional tension of an infinite plate with a square hole

(Ref. 4) taking s and _2 into account,

F(°") (r, _) = -- _, (r-'-- r-_) cos4_, F(O.2)(r, _) =
(13)

_ p [[7H--_a"[_ "_'r-s _ 3r-e) cos _)--3 Intl.

For the case under consideration, the function (7) may be selected in the

following form . , .

where F (I' l)(r, $) is the desired solution for a physical nonlinear elastic

plate with a square hole. We may obtain the equation for the function

F(I, i) by substituting the function (8) in equation (5) and equating the

coefficients in the left and right hand sides in the case Ue

AAF('") = T (°,°)_.,(r_*F(°." )'+ r-lF_ °,l)) + T( TM,,,(r-=F .,(°'°)+ r-lF)O.o)) +

-, (00, -, (0,) -, (0,))__+F (°''),.,(r r.$ +r-'r_ °.°))__ F (°.°)_._(r r._ +• T,.

2 -iT(°'°) -* (o.o)_¢r-mF(O.')--r F,. )+(r F_.; ---- [(t" r._ --_" T,_ ,x r._ --_l (0l) --I (00)

--r-2F v(°'°)_fr-lT(°'l)-r-*T_°a))l-_ -fA2(T(O.,) AF(O.O)q_ T(O.O)_F(Om).

The functions T (0' 0)(r, _) and T (0' l)(r, _) are given in the study

(Ref. i).

(15)

In order to find the stress components o , o e, T e in the curvilinear IP P

orthogonal coordinate system (p, e) we must employ (Ref. 4) the formulas for

changing from polar coordinates (r, _) to the coordinates (p, e). The stress

components Op, oe, Tp0, just as in (Ref. 8), may be represented in the form of

a double series with respect to _ and E. The stress components corresponding

to the functions (9) F (i' J)(r, _) may be determined according to the formulas

0' F(O.O) o_o.,) 0' a'= = Ho -_ F (2'°)"• F(,.o)- a_o.2)=0_o.o, //0 _ (_.s), Ho a-_ (_.o), Oe, (_.,)'

O;0.1) = 0m
Be' (p.e) v ' Oe' ' (16)

+,o ,..,,,(A_, L,,,o,,o,,
" ao,.

i
The coordinate line p = I coincides with the hole profile.

/3O8
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i

, (O_I,I) = #!
v ap, (p.s) -_ + L(,') A -- 2 +

(16)
m 1] F(.'.?)+ L_') #_'T. "")"

The operators LJ depend on the function (14) and may be determined
l

according to the formulas
0

'I"= p-,cos48_--_-'sin40_;q,)=_p-'(l+ cosS0)_--

----ffp-'sin80 +Tp. (l--cos80) "_-i'+P_ ;
(17)

L(,,_=Sp-.(1--co_80);,,_,,= 8p-._os80+ 4p-,si,,se_-
--4p-8(1 --cos8O)_; L(_) = O; L(3') : 8p-4sin4O.

The functions F( i, J)(r, _) contained in (16) represent the solution for

an equation like (15) in the form of Fourier series:

F(;") (r, 9) = _ [[(._) (r) sin k? Jr- g_) (r) cos k?], (18)
kmO

in which the variables r and _ are replaced by p and e, respectively.

Substituting the functions (i0), (13) and their derivatives in equation
(15), we obtain

AAF(',') 48 ._ (56r -*0 -- 270r-*')cos 49. ',
n6 I (19)

We may represent the solution of this equation in the form of the super-

position of the particular integral of this equation

F(l'l)part. (r, _) =r_(2,800r-6_3,214r-S)cos4_H_ i! (20)

and the integral of the homogeneous equation AAF( 1, 1) = 0

F(1,1). (r, 9) = _, (C._ -"+: + C._r-") cos ng. (21)
homo .-2

We may determine the integration constants Cn3 and Cn4 from different

conditions over the hole profile in the case p = I. The final expression for
the function F( I, i) will be

FoJ)(p,O) =--_---(2,}28p-2--2,543p-6--2,80p"+3,214p-')cos4 _. (22)

Taking into account the functions (10), (13) and (22), we may determine

the stress state of a physically nonlinear elastic plate with a square hole

(14) by means of formulas (16), (17), within the given degree of accuracy (9).

Let us present the concentration coefficient values along the profile of a
square hole _ . -

k= [_oTo.,) = 2(1- 1,500kp' + 10,608X'p' + 0,666 cos 40 +

/

(23)
+O,197cos80--3,152kp=cos40). !

Tables 1-4 present the values of the concentration coefficient (23) for

linear and nonlinear theory over the hole profile [in view of the complete

symmetry, the values are presented from 0-45 ° for a different magnitude of the

external load p and different materials (Ref. 6, 8 )].

/309
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Table i presents the values of the concentration coefficient for copper

X = XI = 1"019"10-5 bar-2; Table 2 presents the values for pure copper X = X2 =

= 0.266.10-6 bar -2. Table 3 presents the values for aluminum bronze X = X3 =

= 0.055.10 -6 bar -2, and Table 4 presents the values for open-hearth steel X =

= X4 = 0"033"10-6 bar-2.

TABLE i

Theory I I,oad

[p ,dyr_ o

M

o
_m

_inear]

.40
5O
60
70
75
80
85

3,5799
3,5027
3,4132
3,3143
3,2624
3,2095
3,1560

3,7260

3,4136
3,3399
32gt7
3,1608
3,1117
3.0617
3,0115

3,5535

2,9668
2,9031
2,8301
2,7508
2,7097
2,6684
2,6274

3,0888

20 35

1,7999 1,0835
1,7705 I,I084
1,7394 1,1437
1,7095 1,1922
1,6961 12226
1,6842 1,2576
1,6746 1,2977

1,8610 1,0480

45

1,1215
!,i599
1,2117
12799
1.3211
1,3677
1,4202

1,0620

/310

TABLE 2

_heory Loa!_

p ,ayL_ " 0

.,--I
r-q

0

_inear [

100
2OO
300
400
45O
5OO
55O
6OO
65O

3.7014
3.6294
3,5154
3,3684
3,2864
3,2011
3.1140
3,0296
2,9483

3,7260

An_le O"

5 I I0

3,5299 3,0681
3,4609 3,0079
3,3520 2,9135
3,2121 2,7940
3,1343 2,7286
3,0539 2,6220
2,9728 2,5962
2.8935 2,5336
2.8185 2,4769

3,5535 3,0688

2o

1.8503
! ,8200
1,7752
1,7252
1,702 I
! ,6820
1.6689
1,6635
1,6688

1,8610

35

12531

1_699
1,1040
1,1643
1,2081
12635
1,3326
i,4177
1,5216

1,0480

45

I_709
1,0995
1,1532
12100
1,3015
1,3755
1_652
1,5729
lyO13

1,0620

We may see from these computations that the stress state in the zone of ]311

stress concentration is distributed more uniformly than in the linear case for

the given variation of a physically nonlinear elasticity theory. The concentra-

tion coefficient depends essentially on the elastic properties of the material,

the magnitude of the external load, and the nature of the mapping function.

Comparing the concentration coefficient value determined from a precise

solution (Ref. 3) and the approximate value (Ref. 4) for Hooke's law and for

different approximations in the case of a nonlinear theory (Ref. 5), we obtain

an idea of the rapidity of convergence of the method employed to solve physic_

ally nonlinear problems of stress concentration around arbitrary holes.
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Theory[Load
•Ip,dy=

o
Z

Linea_

200
300
400
5O0
600
700

800.
9O0

I000
1200

3j056
3,6805
3,6458
3,6021
3,5501
3,4907
3,4248
3.3536
3,2784
3,1222

3,7260

TABLE 3

, (

An_le _ "

3,5340
3,5o98
3,4766
3,4348
3,3851
3,3284
3 2657
3,1980
3,1269
2,9798

3,5535

IO 20

3.0718 1.8521
3,0505 1,8413
3,0215 1,8276
2,9851 1,8088
2.9421 1,7883
2.8932 1$661
2,8395 1,7432
2,7821 I$207
2,7224 1,7000
2,6018 1,6698

3.0888 1,8610

TABLE 4

35 45

1,0521 1,0694
1,0576 1,0789
1,0658 1,0927
1,0772 l,l 114
1,0926 1,1357
I,I127 1,1664
1,1387 1,2046
1,1716 1,2513
1,2128 1,3079
1,3260 1,4567

1.0480 1.0620

Theo_ Load I__

|p, dyn@

,PI

o
Z

_0
_0
7_
800
900

1000
llO0
1200

3,6507
3,6185
3,5811
3,5390
3,4925
3,4421
3,3883
3,3318

A_I e O

5 F I0

3,4813 3.0256
3,4505 2,9988
3,4147 2.9697
3,3745 2,9329
3,3301 2,8947
3 2821 2,8535
3,2310 2,8100
3.1773 2,7646

?

2O

1,8287
1,8]54
1,8004
1,784o
l $668
1,7490
1,7314
1,7144

Linea_ _ 3.7260 3.5335 3.0888 1,8610

35 ,15

1.0645 1.0907
1.0728 1.]042
!.0832 1.1210
1,0961 1,1412
l,ll21 1.1655
1,1315 1.1941
l,1549 12277
I,] 829 1,2669

1.0480 1.0620
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DETERMINATION OF THE STRESS CONCENTRATION NEAR A HOLE IN A /312

"_ SHELL - IN THE LINEAR FORMULATION i_

J

_ K. F. Chernykh I ; ' _.-" ° 2_4Z_-- ..._e(Leningrad) N6 7 --

The problem of determining the stress concentration around a hole in a

shell having a general form was advanced in the study by G. N. Savin (Ref. 4).

This problem is characterized by the following requirement: it is necessary

to determine the concentration coefficient K = °max corresponding to the in-

°0

crease in stress due to the occurrence of a hole (o0 -- stress for the un-

perturbed state).

Problems on concentration are very time-consuming. Therefore, it is valid

to present and discuss considerations which may facilitate the solution of this

problem to a certain extent. This article is devoted to the discussion of

some of these considerations.

It is apparent that the hole under consideration must not be very small,

since, for a hole with a radius on the order of the thickness, a three-dimen-

sional stress state occurs in the vicinity of the hole; this stress state is

not described by the relationships of the theory of thin shells. There is not

much interest in investigating small holes (punctures), since they are rein-

forced very simply in practice.

At the same time, the specific properties of the problem disappear for

very large holes. Essentially, in these cases we are dealing with the cal-

culation of a shell with an edge. Usually, such problems may be solved by

dividing the desired solution into the main solution (which is most frequently

the solution with zero moment) and the simple (exponential) edge effect.

It is possible and expedient to introduce a certain quantitative aspect

into the concept "the "upper limit". For example D by employing the

known solution of the stress concentration around a circular hole in a spherical

shell we may assume that we are dealing with a problem of stress concentration /313

around a hole, and the customary (exponential) asymptotic behavior may not be

employed. This criterion for the hole smallness [which depends on the thinness

of the shell walls and the magnitude of the permissible error, see (Ref. 3)]

can be speculatively transferred to arbitrary shells with holes having a gen-
eral form.

The local nature of the problem (Ref. 4) makes it possible to employ the

equations of shallow shells advanced by V. Z. Vlasov. In our opinion, it is

more expedient to imply the somewhat modified equation of V.Z. Vlasov [(Ref. 6),

page 182]

A_+T _ 7. q_, ,_ (1)

where we have the following in arbitrary orthogonal coordinates
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q_= I {o ! /o8_ l oA'2. o_e,,, +
_-_ _" -T\-'6T_ --_-" o_ o:

( O}o i ! OmT. oA

(2)

Thus the complex stresses may be determined by the following relationships

7". ---- T* -- iEhcz_ -F

+ i E hc " _ " "-B " "O_ + -A-N" "_" " "_ " "_'f_ ,. _ _;

-S = S* -}- iEhc_" +

+ iEhc -- \_--'X'_f" a: .B ' O--T" •

These relationships include a system of static functions {T* T:, . ..(_'

H*}, which satisfies the equations of equilibrium, and a system of geometric

functions {sua ' s_ , ..., _u} which satisfies the equations of continuity of

the middle surface. In other respects, the functions introduced are arbitrary.

The form which is advanced is more flexible than the customary form. In

principle, it enables us "pick out" the main portion of the solution obtained

when the static and geometric systems are successfully selected. This may be

done by reducing the role of terms depending on _ to corrections [(Ref. 6),

page 183].

In addition, in the case of loads which are not self-balancing over the

hole profile, we may guarantee the single-valued nature of the stress functions

obtained by appropriate selection of the functions for the static system.

It is very promising and convenient to employ the isothermal coordinates

related to the conformal mapping [in our notation (Ref. 6), page 69] introduced

by G. N. Savin for studying this problem:

(3)

These coordinates make it possible to map the region with a hole onto

the interior of the circle _ _ _0 (Figure i).

The condition of a freely-supported cover is most general for the hole

profile

Qo_=Q_,=0; Qpn=_n; (4)

M, = 0,

/314
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where [see, for example, (Ref. 4, i)]

for an elliptical hole with the semi-

axes a and b

Qp. =Pa-_la--(a--b)c_2_], (5)

the third condition of (4) is replaced

by the less restrictive requirement

balancing of pressure on the cover by
the intersection stress

J

£)ds = ps. (6)
P--P,

This is directed along the normal tO the surface at the cover center (no) _ S

is the hole area. In view of the relative smallness of the hole, it is usually

assumed that n • n o = 1 (Ref. 2).

In the studies employing an a priori law for the distribution of inter-

section stresses (5), or which stipulate that (6) is satisfied on the average,

these assumptions represent the most vulnerable point. The problem of deter-

mining the stress concentration magnitude pertains to the immediate vicinity

of the boundary profile, and the redistribution of the intersection stress may

have a significant influence influence on the concentration coefficient. It is

of value to make the following numerical experiment: let us compare the con-

centration coefficients for a solution based on condition (5), and for a

solution employing a distribution which is uniform along the profile, for

example.

The condition of a rigid cover is much less vulnerable (see Figure 2)

Qee=QP_=O; w=me; Mee=O, (7)

where w0 = w(A) f(¢).

Employing the fact that the cover is rigid, let us set w(A) as the normal

displacement of the cover center. Then, if we know the cover form, we may

readily determine the function f(_), i.e., we may define the law governing the

distribution of normal displacement over the hole profile.

Figure 2 Figure 3

The parameter w(A) may be determined from the condition of the cover equilibrium.

We may introduce the remaining five parameters determining the cover displace-

ment as a rigid body, and we may investigate the case in which the influence

of the general form is applied to the cover.

The boundary condition under consideration is usually approximately

/315
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realized, since, as a rule, covers are more rigid than the edge of a shell.
The case of a free edge is no less important:

Q_ = Qp_ = Q_.= 0; M_ = 0. (8)

The calculation of this case differs from the preceding calculation in the fact

that, if we remove (as is customarily done) the surface load by a zero-moment

solution, for the homogeneous problem we obtain an edge loading which is non-

selfbalancing on the profile. Due to this fact, the stress function w = Im

will be multivalued [(Ref. 6), page 156]. We may avoid this by employing the

modified relationships (I) - (2) (as was already indicated).

We should point out that the conditions of the free edge are the most

"suited" for confirming the proposed computational methods. Conditions

(8) may be realized in experiments with a sufficient degree of accuracy by

establishing corresponding tensions (Ref. 5).

The case of the rigid edge (Figure 3) is the most important case in

applications. It may be formulated in the following form [(Ref. 6), page 121]

x_=x_p=x_.=0; s_=0[w=_=w(A) f(_)]. (9)

The first four of the conditions presented indicate that the edge is not

deformed. The fourth condition (which does not contradict the first three)
determines the translational motion of the cover.

/316

In contrast to the freely geometric conditions (displacements and rotational

angle are given), the conditions described may be formulated in terms of the

basic complex function

6 = m + _w. (i0)

We should note that in essence the case under consideration includes the

entire problem of designing shells which are loaded over a small section of

the surface by concentrated forces, in particular.

Conditions of elastic coupling with a connecting piece (ring) are similar

to the conditions actually existing in shells. They may be formulated as

follows in terms of static and deformation boundary values;

.,-,,. .__P PP |

,_, = ,[, ,+_ : ,_ _ (ii)

x,_p + x_,pe4,+ _, n/. j

If the edges of the shell and the connecting piece have the same thickness

and are made out of the same material, the following complex coupling conditions

may be successfully applied

(6" <= Qp + iEhc ,

Mp_ = Mop 4- iEhcs,,) .
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Figure 4

It is well known that the stresses
Qz and S (Figure 4) are fundamental
stresses for symmetrically loaded shells
of revolution, i.e., they do not depend
on a simple edge effect. The basic
results presented in a paper at the IV
All Union Conference on the Theory of
Shells and Plates (Erevan, October,
1962) indicated that [see (Ref. 6), page
244] similar static boundary values,
which do not depend on the edge effect,
maybe obtained for an arbitrary non-
asymptotic profile on a shell having a
general form. This also pertains to

deformation values. The compliance coefficients of the edge were also intro-
duced (also for an arbitrary nonasymptotic profile on a shell having a general
form).

Unfortunately, this entire study was only performed for customary expon- /317

ential asymptotic behavior. The natural generalization of the results to the

case of Bessel asymptotic behavior could facilitate the investigation of the

concentration problem. In order to solve the'_asic"problem, it is also advanta-

geous to employ the theory of the complex variable functions(for shells pro-

duced by revolution of curves of the second order around their axes of symmetry.

Particular attention must be called to the case when the fundamental stress state

essentially differs from the zero-moment stress state.

In our opinion, the following problems must first be solved:

i. Stress concentrations in the vicinity of an elliptical hole in a

sphere.

2. Stress concentrations in the vicinity of the same hole, but on a

circular cylindrical shell. It is thus advantageous to process the results

obtained based on the following four parameters: K (Gaussian curvature of the

surface), a + b (relative dimensions of the hole), h_ (thin-walled nature of

2R0 R0

i _H I [geodesic curvature of the profile,
the shell), and IF_ J _ • _0 .P = 00

see [(Ref. 6), page 71].

3. Stress concentration between two circular holes on spherical and

cylindrical shells.

4. Stress concentration under the field conditions of holes with square

and triangular partitions.

The solution of these problems would theoretically make it possible to

transfer the results obtained to the case of shells and holes having a general

form, and to provide recommendations of a structural nature.
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These considerations, which naturally require practical verification,
provide the basis for a study on stress concentration which was recently pub-
lished in the Laboratory of Shell Theory of Leningrad State University.
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/

....•DYNAMIC STRESSES IN A THIN THERMOELASTIC PLATE WEAKENED BY /318
A CIRCULAR HOLE /

/

_ R. N. Shvets _ /J

vov 245 .3_
The influence of a circular hole on stress distribution elastic

plate under dynamic loading was investigated in (Ref. 5). The article (Ref.

2) studied the dynamic stress concentration around a circular hole when plane

contraction waves pass through an elastic plate.

This study determines the steady stress state and temperature field .....------I

around a circular hole in a thermoelastic plate, produced by the influence of

concentrated force which is periodic in time (concentrated force, expansion

center, etc.) at a certain point on the surface of the plate. The deformations

and the stresses corresponding to them produced by these forces will be

propagated in the plate in an undulating manner with a finite velocity. Allow-

ance for scattering of mechanical energy in thermoelasticity equations leads

to damping of these waves as they recede from the center.

The problem is solved in the linear formulation and under the assumption

that the wavelength is large as compared with the plate thickness.

Formulation and general solution of the problem. Let us investigate an

infinite thermoelastic plate with a circular hole having the radius R. A

concentrated force is in operation at a certain point on the middle

plane of this plate. The thermoelastic state of this plate may be described by

the following equations

ET'u'+ (_--l)graddiv6--.2_t(_--l)gradt = _a,-_--_;
(1)

i at= _ To _-divuV't--_ ,_--_-T "__ ffi

where _ is a two-dimensional Hamiltonian operator; u = uk I + vk 2 -- displace-

ment vector; F -- mass forge vector; t, t -- temperature of the plate and

the surrounding medium; • -- time; c=c,/c_; cI = p(;___,); c_= ;

atETo " "_tETo 1 -I- ,I
= _-- ; s = • where h -- platex=L/c_(l+¢); p ap/hX; _0 (]--_)O+,)c_ c_(l--2_) l--,'

halfwidth; _, _ -- thermoconductivity and heat transfer coefficients; c --
p v

specific heat per unit volume for a constant volume; _t -- coefficient of linear

expansion.

/319

^

The stress tensor o in two dimensions is related to the displacement

vector u and the temperature by the following relationship:

; = l--_ ["(_) -- at(I+ _)t] _ + G (Vu nu uV), (2)
^

where I is the unit tensor in two dimensions.
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Weshall try to determine the general solution of equations (i) in the
following form CRef. 3)

' ! 0' - --_graddiv q- q-

-[- 2z t grad qr t = _' --_ • _ _.

The functions $2 and T satisfy the following equations

Os - " s I Ot --

('f = % (1 -4- v) "fo],

and the function $i is a particular solution of the following equation

_7"-- "_ _7 _'_0' _'" :

(3)

(4)

(5)

The forces applied at a point will be regarded as the limiting

case of the body forces which are in operation in an unrestrictedly small

vicinity of the point. By employing the device of the 6-function, we may re-

duce the problem of determining the stress state in a plate, produced by con-

centrated forces, to solving the equations (4) and (5) in the case of body

forces which are given in the appropriate manner (Ref. 4).

The body force F = pei_ (x - a, y) corresponds to the concentrated force

Pe imT applied to the plate at the point (a, 0). The body force corresponding

to other concentrated forces may be written (Ref. 3) by the following ex-

pression

,_[1 a O_m_)_, +=--e [_Pt_+ P_z_ (6)

o . o_1_( x y).

In the case of Pij = 0, the mass force F corresponds to the concentrated

moment at the point (a, 0). Assuming that PI2 = P21 = m = 0, we obtain the

body force equivalent to two forces which are in operation along the Ox and O_

axes. In the case of two equal forces Pll = P22 = p' we obtain the expansion

center. If Pll = P22 = m =0, and PI2 = P21 = q' then the mass force F corres-

ponds to a point singularity which may be called the displacement center.

Since thermoelastic dissipation leads to damping of the free oscillations,

we shall investigate the steady state. Substituting the mass forces deter-
mined above in (5) in the case t = 0, we find that:

c

for a concentrated force

i_" [H_o'_(,o,r,)-- H_o'_(,o,r,)]; (7)

/320
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• _ (_. _) in'0"(_,r0 + an_o'' (_r0 - 8n_" 0,0]. (7)

for force factors (6)

where H_ I) ,

order ; r I

here) ;

¢' = 4(;,,,:0 - _')(L_,p"_ + P,2_ -- m

- -,:"c°.,.,]);
• (8)

_, = "t. ,.'®' ( _ o_ o_) [H_o,) (.,.0 +

+ AH_" (or,) -- BH{o'' (13r,)],

H(2)
0 are the Hankel functions of the first and second type of zero

= /r2 + a2 - 2ar cos 0 (the polar coordinates r, 0 are introduced

! , = T[_, -- p--t (1 +_) 0%--Dl;at = -2- l_l -- I_-- i (l + T) e% + O]; _t' !' ,

o = V(oI - __ i (l + _)_0]' + 4_ l (_ + iw0_

• __ i I" " " =--'" A = (o,'--_'); B=_(to,--,%w,=_-, to,=_, o, ca'

Expressions (7) and (8) describe diverging waves of three types: expansion /321

waves, distortion waves, and thermal waves. When each of these waves collides

with the boundary of a circular cavity, three types of waves are reflected.

The reflected waves will be described by the following relationships

.-o (9)

• , = _ [(A_cosn0 + A_ sin 0) H_#_(=r) +
n_o

+ (B,, COSnO + B_ sin nO) H_ ) (Or) • e -_.

The functions ¢2 and _2 represent the solutions of the homogeneous equa-

tions (4). The unknown coefficients An, Bn, Cn, A'n, B'n, C'n in (9) may be

determined from the conditions at the boundary of the circular cavity (r = R).

For a surface which is free of stress and through which heat is exchanged

according to the Newton law, we have

Orr = -(1) _(2) "-(1). _(2) 0 ]tJrr + Orr = O, OrO= °r 0 -I- °rl; =

Or

_xpansgon eente_. Let the expansion center, which changes periodically

in t_e, be in operation at the point (a, 0). Assuming that P12 = P21 = m = O,

PlI = P22 = P in (8) and then substituting in (3), we obtain

iPe _
u(_) = 4G-6_-#grad I_BH_o v Or 0 -- _tAH_o v (arc)l; (11)

/(t) _r0_oP [aSH(0_)(ari) _ _,H(o x) (_rt)] e,_.= _-6P-d
Assuming that A' = B' = C' = 0, we obtain the following from (9) and (3)

n n n
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by

where

Utilizing

employing

nmO

R g¢')@r)l cos nO} el=;Jr % (I Jr "0 grad |A.H_n" (_r) + -....

t¢_)-----_ [An (tol -- ,,2) l._nt, (=r) Jr B. (tos __ [_=)H_"([jr)] cosn6 e_.
nmO

the summation formulas of cylindrical functions (Ref.

H_o" gr' + o-- ;at cosO=

I_,.J.(r)H:_(a)eosnO r_a, (,= 1,2);

== {I, n ----O;[E ,..:"Cr) Ca)cos.O r>. ,.=
formulas (2) we obtain the following for R <=r < a

_., = A,,L, (=r) + B.L. (Or)l _-
@

q-¢o=(1 -- cs) C.Ln (co=r)+ p.} cosnO;

2Oe'=" _{_1. r=1,4. (¢v=- =')/./_tl (0u')Jr
O|l "]- Orr = -- r_ Sn "[o

0

°_s= --'-7/--z.a {[A..M. (=r) + B.M.
o

Jr to= (1 -- c=)C.M. (=..r) + q.} sin nO,

1 s /,eMil)
Ln(kr ) [(n'--nT---_w,r_)HIn"<kr)-} - .... n+, (/U');'

M. (kr) = [n (n 1) H'.1_(kr) -- nlerH_._., (kr) (k = =, [3);

/'. (to_r) [n (n -- I)H_ ) (to=r) (=) r'= -- nto=rHn+x(to=),
[{

Mn (s) r •
(cost)-----[knS--n---_to==r=]H_ ' (to,r) Jr to,rH.+, (to,),

p,, ___4_._=_[_jiPtn,, B[(n, f n__.to,r )Jn([Jr) jrl' ,

-- n ---_ _,, ] J. (=r) +

+ =r/.+, (=r)]H_' (=a)} ;
IPt_ rj I_Sl:l fi,_s --s. = _,_ .. ,-, p=)J.@r)H_)@a)+
4U¢0 s . .,

+ ='A (tol-- =_)J. (=r)/_." (=r)l;

tP,. {='A In (n -- 1)J, (=1")--n=rJ.+l (=r)) H_.'_(=a) --
qn -----"qG'-_=

-- _=B In (n -- !) J. (pr) -- n_rJ.+= (pr)] He.l) (pa)}.

(12)

l)

(13)

(14)

(15)

/322

290



The

where

For the

places of J
n

we obtain

coefficients An, Bn, Cn may be detemined from the equations

_[A_L. ("R) "at-B.I._.(BR)] q- w_ (|-- cs)L. (w,R) C. ----- p.; (16)

{A.M.(=R)+ B_M. (_R)|+ _2(I--c')Mn (w,R)C_= --qn;
Nn (=R)Am + N. (BR)Bo = t.,

_+,(kR) (k= _,6);

region r > R, we obtain the stress expressions, exchanging the

and H (1) i----n(15) according to (13). Assuming that Y0 = 0 in (15)
n

the solution for an elastic plate.

over

distributed.

shear waves.

we obtain the

Ciroular plate. Let us now investigate a circular plate which is loaded

the external profile (r = R2) by the pressure P0e_m0 T which is uniformly

Due to the symmetry with respect to the center, there are no

Therefore, changing to dimensionless quantities in equation (i):

l=_; u=_; x=_; y=_l; _=

=--_l, t=at(l+v)T;Fo=FlS; a00= _ E ; _°=T _''
i

equation for determining the displacement potential _(_ = grad _)

where

-- --_V' _=o.

solution of equation (17) will be

= [AJo (=r) + BYo (¢r) + A,Jo (#r) + BIYo (Br)] e _,

The

(17)

(is)
I

f

i {I_'-- Fo -- i (1 + _) w1 +

V_|_ s -- Fo -- i (l _- _[)wl' + 4_' (I_o _- iw|.

We may determine the unknown coefficients A, A1, B,

conditions

aT
°,_r=0; -_--klT 0 for r =Rl;

* --Pe'; -_.-t-k,T.-_O for r----Rs.I(3F¥ _

We have the following stresses in a thermoelastic plate

r s A--

B I from the boundary

(19)

(20)

where

/323
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In the

where

F,(a) E_(=). F,(_) E,(_)I

Ft(a) E_(a) F_([3) E_(_)I. A_=
N2(a) Ma(a) N,O) M_(O) I'
Nl (a) #ll (a) NI O) #I, @)I

(,,)= <,r>,
F, (I0 = kR,J t ( kR ,) -- -_ R_o (kR,);

Cm I
E, (k) = kR_Ya(l_R,)---f R,Yo (kR,); -

N, (k) = (_ol-- kD tkJl (kRl) -- (-- 1)ik,Jo (kRi)!

M _(k) = (to" -- k 2) ik Ya (kR l) -- (--1)'k,Y o (kR,)l

S (=r) Q (ar) S (_)r)q (_r) I '
F_(_) E, (=) F, @) E_@)I;
N2 (=) M2 (=) iV, @) M, @)1
N, (=) M, (=) _ O) M_ @)i

case

%

J

I
il

I

/,
\

i

-i

0,I 0,2 rag,0

of YO' we obtain the following stresses in an elastic

oO0=

L[J1(foR,)- -R, Jo (toR,)l [ _ Yo ((or) + Y, ((or)l}

plate

(21)

(22)
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Passing to the limit in (22) in the case m * 0, we obtain a result
which corresponds to the static problem.

,
The figure shows the stress distribution °ee on the profile r = RI of an

aluminum plate as a function of the frequency _. The solid line in the figure
designates the stress oe0 in an elastic plate, and the dashed line designates
the stress in a thermoelastic plate.

The computations were performed for T = 0 with the following parameter
values: _ = 0, 3, __R2= i0, y = 0.01. In the case m + 0, the dynamic stresses

RI (st) In the case
decrease, asymptotically approaching the static value °Be "

% 0.198, major resonance occurs in an elastic plate, whereas the amplitude
remains limited in a thermoelastic plate, due to thermoelastic damping.
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/
INFLUENCE OF CONCENTRATED EFFECTS ON SHALLOW SHELLS " /326

I t

Yu.A. Shevlyakov V. e. Shevchenko
(Dnepropetrovsk)

Comparatively little research (Ref. i, 2, 4, i0, ii) has been devoted to

the problem of the influence of concentrated forces on shallow shells. The

authors in these studies confine themselves to only examining shells of a

particular type, subjected to the influence of a normal concentrated force.

In these studies, the solution of the problem indicated above is presented in

double or single trigonometric series, and due to this fact it is difficult to

calculate certain internal stresses due to the poor convergence of the series.

The influence of concentrated bending moments and tangential forces has

not been investigated in the literature. By employing the two-dimensional

integral Fourier transformation and the theory of generalized functions, we

obtained a particular solution of a system of differential equilibrium equa-

tions of shallow shells having constant curvature, subjected to the influence

of any concentrated effects. In the case of a shallow spherical and cylindrical

shell, the solution obtained has a closed form.

Equilibrium equations. The equilibrium equations of a shallow shell

having constant curvature may be represented in the following form in rectan-

gular coordinates x, y

I-+-, a'u a'v . I--, #'v 14-)._ aw . i-- 'y;
T" _+_+--_--'_ R' " _'= _ (i)

a,R|!! ,2[ au ,ETtw+ _-£ +_,+_(_+,)lw--h_R ' (X+,)_+

+(I +_,) =_.

We may determine the components of the internal stresses according to the

following formulas (Ref. 7)

T' = I--_ _ + V ay R_ w ; M, = -- D O-_x'+ "ay'] '

= l--_,'\Oy"_-VOx R" _3 ; M2=--l) tOTjF_-v-_-_]'

Eh(Ov)O. o,wS=2(-0_ ) _+_ ; H=--D(I--v)a-_;

Q,=--D_v'_; Q,=--D V_v.

(2)
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We shall employ the following notation below: u, v, w, X, Y, Z -- com-

ponents of displacement and surface loading; _ = R2/RI; R I and R 2 -- main
Eh3

radii of curvature; D - 12(1 - v2) ;h -- shell thickness;9 -- Poisson coeffici-

ent. The general solution (i) consists of the solution of the homogeneous

system obtained from (i) and a particular solution.

The problem of finding a solution of the homogeneous system will not be

examined here. We would only like to indicate that (i) may be reduced to a
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single differential equation of the eigth order by introducing the displacement
function.

Let us obtain the particular solution of system (i). Subjecting (i) and
(2) to a two-dimensional integral Fourier transformation (Ref. 8)

(_, _) = _ f (x, y) exp i (_ + _) d_y,

we obtain

(a) For

(all the functions with the

corresponding function);

(i) :

--T T, _-_ x;

-- 1 -[-Xv . - --' +" +
-1l

+ _ [(X + ,)_ + (1 + X,) t_] =

dash above indicate the Fourier

(3)

I

transform of the

Let us

(b) For (2) :

TI =

_=

/_a [.- X-F.-I --i _, t[u "b vi'_v Jr _ wj ; M, = D ([2 jr v-q') w ;

eh .- l+x,_] _:=D.(_, ,,_,)_;T__,[t_v+ vi_+ _ ; +

Ea [i_b q- i_u] . 77 D (1 -- _) _;20 +_) , =

now examine a series of particular cases:

(4)

A. X--Y=0.

Determining u, v, w from (3) and substituting their values

certain simplifications we have

_= z _
"'K i_ l(X+ _,)_ + (2x + x,_-- 1),_'l;

= Z ' i" i_ 1(2 + "_-- k) P + (1 + k,) "_1;R_

T' = --_" X _'(_+ X_'); _ = -f(_'+ _)_(P+ _');

T_ = --_--,o" "Z _ (_'+ X_');M_ = T (_'+ _)' ('_'+ _');

= _:-._" T _'_(_ + x_'); H = (1.--,) T _ (_'+ _')';

in (4), after

(5a)

(5b)

(5c)

(5d)

(5e)

(5f)

(5g)
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where

Bo Y=Z=0.

A = (_'+ _')'+ k' (P + X_')';
r I

k'=m(l--_'), i=_. I
h'R'. '

We

__. iel_'+(2+,)_'l.
(e'-t" '_')' '

i_ [(x-i- ',,)_' + ),(2_,+ ),.,--] ) ,;,,+ #, + 2x.,,-.I-2),-- l) P._.]_
X _- (_qm _),

_ _. i_(_'-- _9.
(_"-+-W' '

R,o" -_ x

× i,:h [(x+ _)_ + (x,+ 2_+ 2_ -- i) _,_,+ x(2x-I- _ -- D,P]
(_"t- _')'

-- X. i_ h'-',e')
(_' +,P)' •

(6a)

The expressions for M.' M2'

- (6f).

H' QI' Q2 may be readily determined

C. X=Z=0.

We thus have

= __. h [(gx-i- _ - _)_' + (_+ _)e'] [(2+ _ - x)_,+ (_ -I- x_)_,! _
R:D A (e"_-"f)"

= P__. _'[(_+_- _)_,+(; +x_)_,], +
, R:D A(e' + #)'

(6a)

(6b)

(6c)

(6d)

(6e)

(6f)

from (4)

(7a)
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(7b)

(7c)

(7d)

(7e)

(7f)

We may readily determine the values of MI' M2' H, QI' Q2 from (4) and (7a) -
(Tf). Let us represent (Ref. 9, 12) the unit concentrated force by meansof
the generalized function (Ref. 3)

P = _(x--xo)_--_o), (8)

where 6 is the delta function; x0, YO -- coordinates of the point at which the

concentrated force is applied. For purposes of simplicity, we shall assume

x0 = Y0 = 0.

Employing the inverse transform formula for the Fourier transformation

(Ref. 8)

f(x, 9) = 2_oof(_,_)exp[--i(_ + _y)ld_d_, , (9)
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we obtain the expressions for the inverse transforms u, v, w, "''' Q2" However,

this is difficult to accomplish in the general case. Therefore, let us in-

vestigate several particular problems arising from the method under considera-
tion.

Shallow spherical shell. In this ease, we must set _ = i in (i) - (7f).

Applying the inversion formula (9) to the expressions obtained and the theorem

of residues, after an entire series of simplifications we obtain:

(a) From (5a) - (5f)

]+_ Ix _Xu, ]u=--_R 7_q- T o(kr) ;

'+'R[' --kY. ' ]v = -- _-Vrn ;_"-7-"0 (kr) ;

I
W = -- _ v o (kr);

(10a)

(10b)

(lOt)
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(b)

(c)

From

From

(6a)

(7a)

p Xs y| ,

T,=--T= " r' + _-(=,+=0+7ck(u;+v;) ;

--T --_" Ffv' ;

_. ,- , r_ ,' • ,.,;_]+_,,,;= _" • _ L_ (u,- v0 + _ k (u, -

,-.., > . ] ._. k vr---_ (u_-- vO + _ k (u_ -- v;) + _ =,;I
I -- ,i xy ! k x

H =-- 2---_-"7cu=; q_ =_" vr---_"-7(u=+v0;

! k Y U
Q= =_" y_ • ";-( ,+vO;

7 3

- (6f)

(l@-_)'[y' , x' I , ] I@-u = "_r_-K[_-_- vo -- Tr • _ (u I -- ol') -- _ In r;

(i+_),[xy., xy 1 ,]v = _ [_ _o + ,,- . _ (u, -- v_) ;

1+_ [x kXu, ] -w=_E-_R. _+T oj;

Iq-, [x'--xy' xy'ku_]_____ xT_ = --_-L_ u=+ _ "r';"; -

,+_ k rx.--axy.. 3x ] _ xs_ _ [---7- _us .+ v._)- 7" (u_ + v,) + • _ :

l +., [_ _ x,y x,y ku; ] n y.S= 2_ [_u=+_- --_._-,

_-_,[_ ._xy" ] _+_ x_ = --2_,_ v=. _ kv_ + _,_/_(u_--n) +
i --_" x"-- 3xy'.

M,=.._'-"r,,'-_'-L__,,.+_k,,;]+
_} _(I -I-"O x l ---,' ._ --3x_.

" _---T " ,'--_(u'-- vO _,,_ ,, ,

,-_,[,_____ x,_ ,] ,-_, _'_-*H = 2=--_-_ v=+ _v= + =-_ • ,. ;

Q, = _-_ • _ (u, - v,)+ _ (u; - v;) ;

1 +_XYu=;q==-- 2---_- r-f

- (7f)

V= "

(l+',,)'[xy ., . xy I , , ]u = _ [_ vo, 7__u, - v;) ;

[_. x, , . ] ,+,,.(I+'Q'2=Eh V_ --'_f . _-_(u_--v[) ---g_-lnr;

W ----2_Eh- -'1- U_ ,

(10d)

(10e)

(10f)

(10g)

(10_)

(10±)

(lla)

(llb)

(lic)

(lid)

(11e)

(Zlf)

(llg)

(llh)

(lli)

(llj)

(ilk)

(12a)

(12b)

(12c)
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'+" ' ,,.
T,= l+_(_,--_,yu=+X,Yku_) i y

S= _ us+ ku; --_ •7¢;

(12d)

(12e)

(12f)

_k,'---_" ,, s_R " k_/'_ (u,--v,) +

14-_ I V (Uz--Vz); (12g)

M_= _ - ;; 8_ I, f/2 [7 _"' ,,

ax'ycy,(us_os)]+ _04-_) I y4- r' 2_R # F_7 (ul-v'); (12h)

H= -- ]--,',/_,.__.__R•x' --3xy'_ + 2_--_-R[ ---_-- v'l " _' [_-- xYs 4- XY'kv;];__. (12i)

!+'_ xy
Q' = -- 2_--_ " _ U=, (12j)

Q2 = 14-_ 1 rx,, y, ]2_.R " _ [;_u, -- v,) 4- ,T k (u; -- v;) '.. (12k)

The following notation is introduced in (10a) - (12i)

u. (z).+ iVn (Z) = i-nKn (z _[); z = kr; r' --- xa + g=,

where K (zi/_ is a modified Bessel function of the second kind (Ref 5) Then " "

theory of generalized functions (Ref. 3) is employed here to calculate certain

divergent integrals. We shall show that

i '• e-_x c°s_d_ = -- In r + C, (13)

where C is an Euler constant.

Let us investigate the generalized function (Ref. 3)

lnx+={l%x x>O;x<O. '

The generalized function x -I will be the derivative of this function.

simple transformations (Ref. 3) lead us to (13).

(14)

Further

Employing the well known results of the theory of generalized functions

and fundamental solutions of an elliptical system of differential equations

with constant coefficients, we may readily obtain a solution of the problem

in the case when a unit bending moment acts on the shell.

It is known (Ref. 9, 12) that the unit bending moment may be regarded as

a derivative of the delta function. Consequently, in this case a solution is

obtained by simple differentiation of (10a) - (12i) with respect to the corres-

ponding variable. Regarding (10a) - (12i) as influence functions, we obtain

the solution for case of arbitrary loading.
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In the case when symmetrical loading acts on the shell, the method of
integral Hankel transformation (Ref. 8) represents a more effective method for
obtaining the particular solution. In (13) this method is employed to obtain
particular solutions for the case of loading of a shallow spherical shell by
loads applied over the circular regions.

Shallow cylindrical shell. We must set I = 0 in (i) - (7f). Procedures

similar to the preceding ones lead to the following results:

(a) From (5a) - (5g)

I+_
8=k,_o[h (=0+ v0)- Is(=0--v0)l

• + fsUo)dx;
z

z

d,.oS ,oo+
O

_ I+'_ {'y
v - s=k:_o J 7- qsu_ +/,vO dx

0 0

xU

O0

Iv

'Sw = _ If, (uo+ Vo)-- h (Vo-- uo)l dx;
0

T_ = _ q, vs + fsUo)+ 7-qsu,--hv,) ;

F.h [ x ]T, = _ q,.v, +/_Uo)-- 7 qsu_ -- hv_) ;

Eh Y uS =_. 7" qs J--hvO;

l+,s I--* x
M_ = -_ (hUo-- &Vo) 4= "7 qsv_ :+ huO;

n+,, (f_Uo, [zOo)+ l -,, xMs : -_? -'i'f'" "i'qa va + hu9;

H = n-,. y (f,vt + hu_);4z r

{k z
Qt : _ Ih (Uo-- Vo)+ f, (Uo+ Vo)l+ T th (u, + v0 ÷

"]- Is (Ut -- Vt)]} ;

k y uQ' = 4-: "7" |I ( t + vO + Is (ut -- _Jl;

i
4nklR D S Oct°° -- fsu°) dy

(15a)

(15b)

(15c)

(15d)

(15e)

(iDf)

(15g)

(15h)

(:5:)

(15j)

(15k)
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(b) From (6a) - (6f)

U
(3 -- "0(i + ",) (1 + _)' x

4=e_ (flu, -&Vo) 4_eh ' 7 q,u, + fsvO +
,It

0

__v = 04=eh+ ")'' _• (f,u_ + fsvO + _'_ If, (Uo+ Vo)+
0

(16a)
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(c) From

z y.

o o

W z = -- Uz;

14-_ !+_ k • yt ,
r, = -_;.. -_.(f,", + &_,)+ -n- • _ ._(t,,,, + I*;) +

{ }# Wk _ lP_(f,Uo- AVo)+ _ f_ (Uo+ Vo)+ & (Vo- uo) + 7"

T.= .+,Ix. ' .L' ,t u' ]4. -_ (f,u_ + &v_)+ _ . ,, v, _ +. &v;) --

"'1 ÷ . ]-- _. f. (Uo+ Vo)+& (v0-- Uo)+ I/_ q.uo + f.v;) •

S = ! +, { xv if. (u. + n) + & (v. -- u_)l ---7

--l,v;)}
l--_tl xs .o yt I .

M,= _-_l_- _.u,-t,,,.)+_. _ (t.,,,- f,,,;)]-
'V

4,,kR"{ V_ (/,v; + &-;);

M,=_ +_. ' .[_ O',u,- f,v,) (&u,- &v,)+

+ t,(.o+ _o)+ t,(_o-Vo)] _'+"'8.,__V_-(t,,,'o+ f,_;);

n= f_#l-"e-'-au,(v,+u,)+&(u, v#l+{V_q_+
• (I --,),

+ &uo). _ ;

Q,= • -- q_vL+ f,u'_ - ¢-.,,_ if, (u;-- v,)i

-t. + }- A [r.,,.-r,oo+ +r,u.4;,
' -, t + ,. _ q,u, - l..v,);(l. = -- _ q,u, + l.v,) . s.R

(7a) - (7f)

Uv--vx; Wu---vz" ,

v = (3-- ,) {1+ ,) q_Uo-- f2Vo)+ (1+ ,)_ x4,_e._ 4._zl. " 7 q,u_ + I, vJ +
It

l+2"_k f
+ -_ j t/s(Uo -- Vo)--f. (Uo+ Vo)]dx--

o
yll ,,//It

ks
_EhS S _tVo JI-'muo)dydy 4- "_"_ SS [/¢s (Uo -I- v.) -

: 00 000

-- f. (vo -- uo)] dx dy dy;

i--'_ g , , 1 4-'_ xy
T, = _ • 7 k V2 q_Uo- gvo) - -gr k a If, (u, + v,) +

kS S y (/tSul -- l'fJl) dX;+ & (v_-- u_)l + _ 7"
o

T, 3+'_ k V 1+'_ xy(_.U,+8= T [ft (u_ + v_) + f_ (ui -- vi)] -- "TU" k -_

+ f,v:);

(16b)

(16c)

(16d)

(16e)

(16f)

(16g)

(16h)

(16±)

(16j)

(16k)

(17a)

(17b)

(17c)

(17d)
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Here we have

M,=

1+_[x'., y' k ,

s = - _ [_- v,_, + h_,) + _ q,,,, +/,v;)] +

I 1k x __ , ,+ _ 7" U q_uo-- f, Vo)+ f, (uo+ Vo)+ & (vo-- Uo) ;

, , ] -- vz xy
3]6,_k_+ "'" _-V'_ q,vo -- &Uo)+ _ • _ [h (u, + v,) --

• .It

M s

0

! -- 4_ -- _" , ! -- _" xy .. (u z _}_vs )

I S y if,v, + Lua) dx;--h(vg--u_)l--_ 7
0

I -- _i [xJ ,. y' k , ]=. 8.k,----_1_q,u, -- t,vO -- _ . _ q,u, -- f,vi) +

!--'¢[ t-'_ x .... ]+ "g_ [v z 7 q,Vo + I_Uo)-- [, (uo-- Vo)+ h (Uo+ Vo) ;

Q, = "-_-_"" 7qsv_ + hu,) -- . xy

1+_{ xs= -- q_Vo+ hU'o)+ ,-i" [h (u, - vD -
, 1 x-,.,.,+ }+ +,.o.q.

.kx. kx , kx . kx
[1 = cn "F cos -_-; Is = sn _ sm -_-;

kx kx kx . /or
Is = sh _ cos _ ; _ = ch _ sm -_ ;

(n)u_ =ker, • v_ kei, _t

kr

ker, (z) -+- i kei, (z) = i-nKn (zl/i);. z = _,

a modified

(17e)

(17f)

(17g)

(17h)

(17i)

where K (zi/_ is Bessel function of the second kind. When
n

ring the integrals, we employ the theory of generalized functions, as was done

above (Ref. 3).

(17j)

(laa)

(18b)

(18c)

(18d)

calcula-

Reetar_ular plate. In this case R 2 = _, k = 0.

In (10a) - (12f) or in (15a) - (17j), let us pass to the limit in the case

k ÷ 0 and R 2 ÷ _. Employing the values of the functions (18a) - (18d) for

small values of the argument, we obtain the following after certain simplifica-
tions:

(a)

w = 8_ rs in r;

,+ ,-.._" Ms = * In •' --4--_" ---_'-_;

H_ I--_ x¥ ! x I _F_. •_, qt=--_" 7_,q,----_;" ;

, (19)
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(b)

(c)

(3--_) (I + _) In r + (1 + sp z,u = 4=Eh _ " r-i ;

(l+_p zu

" ] ,"
--I -!- V] ;

(20a)

(20b)

(20c)

(20d)

u=[l+_)' x_.
4,d_---'i- " r-r,

(3--_)(I-F_)lnr" (1+_)' x'.
V= 4=Eh 4_Eh " r_ '

1 2(1+_)_--1 +v ;TI = --_"

.[ , ]S=--4- _._- 2(1+_,)7Z+, 1--_ .

(21a)

(21b)

(21c)

(21d)

(21e)

The expressions obtained for stresses and displacements coincide with the

well known solution of Love.

In conclusion, we would like to note that from (10a) - (10f) and (15a) -

(17j) we may readily obtain the asymptotic values of displacements and internal

stresses close to the point at which the concentrated force is applied (Ref. 9)

which have a simpler form.
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INVESTIGATIONOFTHEBRITTLEFRACTUREOFSAMPLESWITHSTRESS
CONCENTRATORS..

S Ya. Yarema_ L. V Ratych _ /': _ N67(L'vov)

/338

-24545

It is well known that the strength of samples made of brittle materials

having cuts is considerably less than the strength of smooth samples having

the same cross-section, due to a sharp local increase in stresses in the vic-

inity of the cuts. For ideally brittle and homogeneous materials, this de-

crease in strength is taken into account by the theoretical coefficient of the

stress concentration _ (Ref. 2, 4). However, there is significant discrepancy

between the theoretical and the so-called effective coefficient of stress con-

centration k3 determined experimentally. This discrepancy is primarily re-

lated to the non-uniformity and deffective nature of the structure, which is

inherent to all materials to a certain extent. Structural imperfections may

Figure i

produce significant, and a rapidly damped

local disturbance of the stress state.

In a completely similar manner, high

local and rapidly damped stresses arise
for the stress concentrators which we

derived• Therefore, when the structure

is correspondingly non-uniform, artific-

ial concentrators having specific dim-

ensions can have only a slight influence

upon the strength of an element, or may

have absolutely no influence upon it.

In this report we shall deal with the

decreased sensitivity of a material to
the stress concentration characterized

k - i
by the coefficient q = _ . Thus,

k T - i
in actual designs for strength, the non-

uniformity of the structure must be

taken into account, along with allowance

for the stress concentrators applied.

For this purpose, this article advances

a macroscopic hypothesis of brittle fracture (Ref. i) corresponding to a

structural imperfection in integral terms. The influence of these imperfections

may be neutralized within the limits of a certain specific volume contained in

a sphere having the radius p. We may intrepret the sphere having the radius p

as the minimum volume of the given material which -- on the basis of the laws

of statics -- has mechanical properties which may be determined by customary

tests. The value of the parameter p depends on the magnitude of the structural

nonuniformities of the material, their nature, and the distribution density.

The larger is 0, the more coarse-grained and nonuniform is the structure, and

the greater are the microdefects in the given material. The parameter P pro-

vides the basis for determining the macrodeformationsof a real body, which are

related to the macrostresses by Hooke's law. Thus, the hypothesis of brittle

fracture may be formulated as follows. Brittle fracture occurs in a given
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_7

I I

t

6 8 .q,Hn

Figure 2

/34___O0

_ -1-_, _-'_ b " .-. 1,

Figure 3

volume when the macrostresses reach the

separation resistance limit of the

given material, which may be determined

when smooth samples are subjected to

tension. Consequently, the concentration

coefficient of macrostresses must co-

incide with the effective stress con-

centration coefficient obtained experi-

mentally, which will provide the basis

upon which the research results below

are analyzed.

This article investigates the in-

fluence of the stress concentration on

the supporting capacity of samples made of

brittle microscopically nonuniform mat-
erials.

The material used for the study was

gray pig iron which had sufficient brit-

tleness and a very nonuniform structure

produced by graphite inclusions which

represented natural stress concentrators. After normilization or hardening in

oil, the gray pig iron had minimum plastic deformation (no more than 0.2%).

Tests were performed for torsion (Ref. 3), which showed that the samples chosen

for the study were quite brittle.

Strength of plates with circular holes under tension. The test was per-
formed on plates made of gray pig iron, with the brand name SCh 12-28 (the

microsection x 200 is shown in Figure i) with circular holes having a different
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diameter (0.7; 1.0; 1.4; 2.5; 3.0; 5.0; 6.0; i0.0 and 16.0 mm). The plate
dimensions (120 x 400 x 2 mm)were selected so that the influence of its edges
upon the stress state at the hole was negligibly small. The plate was rup-
tured in special clamps which prevented their fracture when being mounted
and which provided a uniform loading distribution. The experimental results
shownin Figure 2 (the small circles are for the first group of samples, and
the dots are for the second group of samples) clearly indicate the dependence
of the breaking load on the hole dimensions.

k i p:o,J6

=

Figure 4

The breaking load was also determined on the basis of the macrostress

hypothesis according to the following formula (Ref. i)

@o

ap= ¥, (i)

where o0 is the resistance of the material to separation; k -- macrostress

concentration coefficient

2_at

k = (l+_)(l +=),(I+2=+2_t) +

__3 + II_+ 25='+ 40_'+ 42=4+ 24a'+ 8_*. (2)
(I + 2= + 2=9'

P
tl=_.

As may be seen from formulas (2), the macroscopic concentration coefficient

depends both on the structural nonuniformity of the material (p), and on the

size of the hole (R). A comparison of the experimental data with the

theoretical data enables us to determine the structural strength parameter for

the material being studied, which is p -- 1.4 mm (o0 _ 17 dyne/mm2).
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The results of the experimental research provide good substantiation of
the general pattern of the plate strength change as a function of the concen-
trator radius, which was predicted by the macroscopic hypothesis of brittle
fracture.

As analytical calculations as well as experimental data have shown, holes
whosediameter is significantly less than the parameter 0 have hardly any in-
fluence upon the plate strength. Whenthe hole diameter increases, the effec-
tive coefficient of stress concentration k_ rapidly increases, and then slowly

approaches the theoretical value kT = 3.

Strength of bands with hyperbolic cuts under tension. The influence of

stress concentration upon strength, with allowance for structural nonuniformity,

was also investigated for bands with hyperbolic cuts under uniaxial tension.

Two groups of bands with the dimensions 44 x 240 x 2 mm were prepared,

respectively, from two different melts of gray pig iron, with the brand name

SCh 24-48 (the microsection x 200 is shown in Figure 3). Cuts of a hyperbolic

profile (Figure 4) which may be described by the equation
1

(x'-- 64) R K !

with different radii of curvature at the apex (_ = 0.5; 0.6; 0.8; i.i; 1.6;

2.0; 2.5; 4.0; 8.0 and 16.0 mm) for a constant width of the minimum transverse

cross-section 2a -- 16.00 mm, were drawn on a copying machine within an accuracy
of + 0.05 mm. The bands were subjected to fracture in order to determine the

breaking load. This load was also determined analytically. For this purpose,
the displacements were found from the stress functions of Neyber (Ref. 2), and

then the macrostresses were determined in bands with hyperbolic cuts under

tension. We may obtain the breaking load as a function of the resistance to

separation o0, the geometry of the concentrator, characterized by the parameter /343

<, and the structural parameter 0 from (i). We may determine k as:

k----- 2 +_mn'v--l'f _' sh_+cos'v Vx'-+'_(2-_lj (3)

'_(I+_) rcctg_+
where

= l S

IV -]cos' _ = l--_-_, _' (I -- _)' + + _ + _ (I --_) + _ ;

l [_ (I---_'+{_

_g p.

(4a)

(4b)

(4c)

(4d)

(4e)
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where _ is the radius of curvature at the concentrator apex.

Figure 4 shows the change in the breaking load referred to the separationo
resistance-- p, as a function of _ for the values p = 0.36 and p = 0.56 mm.

°0 _K

Figure 4 shows the values obtained experimentally: the small circles --

for the first group, and the dots for the second group of samples. These

represent the mean values for no less than three tests.

The structural parameter of the strength p = 0.37 mm (o0 = 27 dyne/mm 2)

may be determined by comparing the experimental data with theoretical data.

We should stress the good agreement between the experimental data and the

theoretical curve.

The research reveals the following.

i. The nonuniformity of the structure is the most important factor which

determines the strength of elements made of brittle materials, containing

articifial stress concentrators. This factor may be considered analytically

on the basis of the macroscopic hypothesis of brittle fracture, which has been

experimentally corroborated.

2. A comparison of the mechanical and metallographic research shows that

the coarser is the structure -- particularly, graphite inclusions -- the

larger is the structural strength parameter, and, consequently, the smaller is

the influence of artificial stress concentrators on the element strength. The

structural nonuniformity also specifies the strength limit of the material:

for p = 1.4 mm, o 0 = 17 dyne/mm 2, and for p = 0.37 mm, o0 = 27 dyne/mm 2.
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